Dienst van SURF
© 2025 SURF
A level designer typically creates the levels of a game to cater for a certain set of objectives, or mission. But in procedural content generation, it is common to treat the creation of missions and the generation of levels as two separate concerns. This often leads to generic levels that allow for various missions. However, this also creates a generic impression for the player, because the potential for synergy between the objectives and the level is not utilised. Following up on the mission-space generation concept, as described by Dormans, we explore the possibilities of procedurally generating a level from a designer-made mission. We use a generative grammar to transform a mission into a level in a mixed-initiative design setting. We provide two case studies, dungeon levels for a rogue-like game, and platformer levels for a metroidvania game. The generators differ in the way they use the mission to generate the space, but are created with the same tool for content generation based on model transformations. We discuss the differences between the two generation processes and compare it with a parameterized approach.
LINK
This paper frames the process of designing a level in a game as a series of model transformations. The transformations correspond to the application of particular design principles, such as the use of locks and keys to transform a linear mission into a branching space. It shows that by using rewrite systems, these transformations can be formalized and automated. The resulting automated process is highly controllable: it is a perfect match for a mixed-initiative approach to level generation where human and computer collaborate in designing levels. An experimental prototype that implements these ideas is presented.
This paper investigates strategies to generate levels for action-adventure games. For this genre, level design is more critical than for rule-driven genres such as simulation or rogue-like role-playing games, for which procedural level generation has been successful in the past. The approach outlined by this article distinguishes between missions and spaces as two separate structures that need to be generated in two individual steps. It discusses the merits of different types of generative grammars for each individual step in the process. Notably, the approach acknowledges that the online generation of levels needs to be tailored strictly to the actual experience of a player. Therefore, the approach incorporates techniques to establish and exploit player models in actual play.
The transition to a circular, resource efficient construction sector is crucial to achieve climate neutrality in 2050. Construction stillaccounts for 50% of all extracted materials, is responsible for 3% of EU’s waste and for at least 12% of Green House Gas emissions.However, this transition is lagging, the impact of circular building materials is still limited.To accelerate the positive impact of circulair building materials Circular Trust Building has analyzed partners’ circular initiatives andidentified 4 related critical success factors for circularity, re-use of waste, and lower emissions:1. Level of integration2. Organized trust3. Shared learning4. Common goalsScaling these success factors requires new solutions, skills empowering stakeholders, and joint strategies and action plans. Circular TrustBuilding will do so using the innovative sociotechnical transition theory:1.Back casting: integrating stakeholders on common goals and analyzing together what’s needed, what’s available and who cancontribute what. The result is a joint strategy and xx regional action plans.2.Agile development of missing solutions such a Circular Building Trust Framework, Regional Circular Deals, connecting digitalplatforms matching supply and demand3.Increasing institutional capacity in (de-)construction, renovation, development and regulation: trained professionals move thetransition forward.Circular Trust Building will demonstrate these in xx pilots with local stakeholders. Each pilot will at least realize a 25% reduction of thematerial footprint of construction and renovation
Climate change is one of the most critical global challenges nowadays. Increasing atmospheric CO2 concentration brought by anthropogenic emissions has been recognized as the primary driver of global warming. Therefore, currently, there is a strong demand within the chemical and chemical technology industry for systems that can covert, capture and reuse/recover CO2. Few examples can be seen in the literature: Hamelers et al (2013) presented systems that can use CO2 aqueous solutions to produce energy using electrochemical cells with porous electrodes; Legrand et al (2018) has proven that CDI can be used to capture CO2 without solvents; Shu et al (2020) have used electrochemical systems to desorb (recover) CO2 from an alkaline absorbent with low energy demand. Even though many efforts have been done, there is still demand for efficient and market-ready systems, especially related to solvent-free CO2 capturing systems. This project intends to assess a relatively efficient technology, with low-energy costs which can change the CO2 capturing market. This technology is called whorlpipe. The whorlpipe, developed by Viktor Schauberger, has shown already promising results in reducing the energy and CO2 emissions for water pumping. Recently, studies conducted by Wetsus and NHL Stenden (under submission), in combination with different companies (also members in this proposal) have shown that vortices like systems, like the Schauberger funnel, and thus “whorlpipe”, can be fluid dynamically represented using Taylor-Couette flows. This means that such systems have a strong tendency to form vortices like fluid-patterns close to their air-water interface. Such flow system drastically increase advection. Combined with their higher area to volume ratio, which increases diffusion, these systems can greatly enhance gas capturing (in liquids), and are, thus, a unique opportunity for CO2 uptake from the air, i.e. competing with systems like conventional scrubbers or bubble-based aeration.
The energy transition is a highly complex technical and societal challenge, coping with e.g. existing ownership situations, intrusive retrofit measures, slow decision-making processes and uneven value distribution. Large scale retrofitting activities insulating multiple buildings at once is urgently needed to reach the climate targets but the decision-making of retrofitting in buildings with shared ownership is challenging. Each owner is accountable for his own energy bill (and footprint), giving a limited action scope. This has led to a fragmented response to the energy retrofitting challenge with negligible levels of building energy efficiency improvements conducted by multiple actors. Aggregating the energy design process on a building level would allow more systemic decisions to happen and offer the access to alternative types of funding for owners. “Collect Your Retrofits” intends to design a generic and collective retrofit approach in the challenging context of monumental areas. As there are no standardised approaches to conduct historical building energy retrofits, solutions are tailor-made, making the process expensive and unattractive for owners. The project will develop this approach under real conditions of two communities: a self-organised “woongroep” and a “VvE” in the historic centre of Amsterdam. Retrofit designs will be identified based on energy performance, carbon emissions, comfort and costs so that a prioritisation strategy can be drawn. Instead of each owner investing into their own energy retrofitting, the neighbourhood will invest into the most impactful measures and ensure that the generated economic value is retained locally in order to make further sustainable investments and thus accelerating the transition of the area to a CO2-neutral environment.