Dienst van SURF
© 2025 SURF
Wereldwijd schieten ze als paddenstoelen uit de grond: living labs. Deze ‘levende laboratoria’ zijn er in alle soorten en maten. Meestal wordt het lab gezien als een onderzoeks- en ontwikkelomgeving om een probleem met verschillende partijen op een innovatieve manier op te lossen. De thema’s van de labs variëren van het ontwerpen van de lichtste boot of de snelste (zonne)auto tot het opnieuw inrichten van een havengebied, halvering van koolstof-uitstoot van het goederenvervoer in steden, nieuwe zorgconcepten of het versterken van de lokale democratie. Wat iemand van het meedoen aan een living lab zou kunnen leren wordt uitgelegd aan de hand van een living lab waaraan de auteur zelf als deelnemer drie keer heeft meegedaan, Aalto Camp for Societal Innovation (ACSI).
Martien Visser maakt zich best zorgen over het Nationaal Plan Energie (NPE), dat deze zomer verschijnt. Het expertteam (ETES) keek volgens hem niet veel verder dan Nederland en dat geldt evenzo voor de netbeheerders in hun II3050 rapport. “Terwijl er juist meer dan ooit noodzaak de energiemarkt op tenminste de Noordwest-Europese schaal te beschouwen om de nationale plannen daar vervolgens op af te stemmen.”
LINK
Droog veen zorgt per hectare per jaar voor net zoveel CO2-uitstoot als 135.000 kilometer autorijden. Nat, levend veen slaat juist koolstof op. Onder de vlag van Regio Groningen-Assen werken tientallen organisaties samen om in het veengebied Groningen weer het superbiodiverse moeras te creëren dat er vroeger was. Jasper van Belle, landschapsecoloog aan hogeschool Van Hall Larenstein geeft een toelichting.
LINK
Plastic products are currently been critically reviewed due to the growing awareness on the related problems, such as the “plastic soup”. EU has introduced a ban for a number of single-use consumer products and fossil-based polymers coming in force in 2021. The list of banned products are expected to be extended, for example for single-use, non-compostable plastics in horticulture and agriculture. Therefore, it is crucial to develop sustainable, biodegradable alternatives. A significant amount of research has been performed on biobased polymers. However, plastics are made from a polymer mixed with other materials, additives, which are essential for the plastics production and performance. Development of biodegradable solutions for these additives is lacking, but is urgently needed. Biocarbon (Biochar), is a high-carbon, fine-grained residue that is produced through pyrolysis processes. This natural product is currently used to produce energy, but the recent research indicate that it has a great potential in enhancing biopolymer properties. The biocarbon-biopolymer composite could provide a much needed fully biodegradable solution. This would be especially interesting in agricultural and horticultural applications, since biocarbon has been found to be effective at retaining water and water-soluble nutrients and to increase micro-organism activity in soil. Biocarbon-biocomposite may also be used for other markets, where biodegradability is essential, including packaging and disposable consumer articles. The BioADD consortium consists of 9 industrial partners, a branch organization and 3 research partners. The partner companies form a complementary team, including biomass providers, pyrolysis technology manufacturers and companies producing products to the relevant markets of horticulture, agriculture and packaging. For each of the companies the successful result from the project will lead to concrete business opportunities. The support of Avans, University of Groningen and Eindhoven University of Technology is essential in developing the know-how and the first product development making the innovation possible.
Er bestaat vanuit de landbouw een grote behoefte aan organische bodemverbeteraars die kunnen bijdragen aan de verbetering van de bodemstructuur, onder andere om de droogtegevoeligheid te verbeteren en daarnaast bij te dragen aan de opbouw of instandhouding van de bodemkoolstofvoorraad. Lokale organische reststromen kunnen de landbouw (deels) in deze behoefte voorzien. Het toepassen van lokale organische bodemverbeteraars is een goede stap in de richting van kringlooplandbouw en draagt daarmee bij aan het behalen van beleidsdoelstellingen. Momenteel zijn er vele initiatieven waarbij organische reststromen welke bij terreinbeheer vrijkomen worden gezien en toegepast als grondstof binnen een circulaire economie. Vanuit deze initiatieven komen verschillende resultaten en geluiden (m.b.t. productkwaliteit en effecten) over de inzet van organische reststromen. Hierdoor is er onduidelijkheid bij agrariërs over de effecten van bodemverbeteraars en dit remt de circulaire ambities van de landbouwsector. In dit project gaan de hogescholen HVHL en HAS tezamen met een breed consortium van agrariërs, bedrijven, kennisinstellingen en overheden onderzoeken waar de kwalitatieve en economische kansen en knelpunten liggen bij het lokaal verwerken van organische restromen tot bokashi. Hierbij wordt ingehaakt op de bestaande ca. 60 pilots binnen het langjarige Kennisprogramma Circulair Terreinbeheer en de daar reeds opgehaalde en nog-op-te-halen praktijkervaring om meer inzicht te krijgen in de productkwaliteit, het verdienvermogen en de effecten op bodemkwaliteit en waterkwaliteit/kwantiteit, om te komen tot een handelingsperspectief voor agrariërs in het gebruik van bokashi. Hiervoor gaan we in acht grondig geselecteerde pilots in Noord- en Zuid-Nederland aan de slag. Het projectresultaat levert meer inzicht in de borging van productkwaliteit van bokashi, het potentiële verdienvermogen voor agrariërs om bokashi te gebruiken en de effecten van bokashi op verschillende ecosysteemdiensten.
In the course of the “energie transitie” hydrogen is likely to become a very important energy carrier. The production of hydrogen (and oxygen) by water electrolysis using electricity from sun or wind is the only sustainable option. Water electrolysis is a well-developed technique, however the production costs of hydrogen by electrolysis are still more expensive than the conventional (not sustainable) production by steam reforming. One challenge towards the large scale application of water electrolysis is the fabrication of stable and cheap (noble metal free) electrodes. In this project we propose to develop fabrication methods for working electrodes and membrane electrode stack (MEAs) that can be used to implement new (noble metal free) electrocatalysts in water electrolysers.