Dienst van SURF
© 2025 SURF
The aim of this meta-analysis was to analyze the experimental research into the effects of job-embedded professional development (JEPD) for teachers and student outcomes. Our meta-analysis of experimental studies of the effects JEPD, included 20 studies (with 79 experimental comparisons) at teacher level and 19 studies at student level (with 34 experimental comparisons). Analyses of the studies, representing 2,062 teachers and 21,425 students, revealed a significant, medium-to-large effect size at teacher level (ES= 0.699, SE= 0.092) and a significant medium effect at student level (ES = 0.523, SE= 0.137). Effects for teachers were smaller in studies with a large sample size. Effects for students were positively related to the length of the intervention. The positive outcomes at teacher and student level support the implementation and expansion of JEPD programsacross schools.
MULTIFILE
Recently, the job market for Artificial Intelligence (AI) engineers has exploded. Since the role of AI engineer is relatively new, limited research has been done on the requirements as set by the industry. Moreover, the definition of an AI engineer is less established than for a data scientist or a software engineer. In this study we explore, based on job ads, the requirements from the job market for the position of AI engineer in The Netherlands. We retrieved job ad data between April 2018 and April 2021 from a large job ad database, Jobfeed from TextKernel. The job ads were selected with a process similar to the selection of primary studies in a literature review. We characterize the 367 resulting job ads based on meta-data such as publication date, industry/sector, educational background and job titles. To answer our research questions we have further coded 125 job ads manually. The job tasks of AI engineers are concentrated in five categories: business understanding, data engineering, modeling, software development and operations engineering. Companies ask for AI engineers with different profiles: 1) data science engineer with focus on modeling, 2) AI software engineer with focus on software development , 3) generalist AI engineer with focus on both models and software. Furthermore, we present the tools and technologies mentioned in the selected job ads, and the soft skills. Our research helps to understand the expectations companies have for professionals building AI-enabled systems. Understanding these expectations is crucial both for prospective AI engineers and educational institutions in charge of training those prospective engineers. Our research also helps to better define the profession of AI engineering. We do this by proposing an extended AI engineering life-cycle that includes a business understanding phase.
LINK
This article analyzis two Dutch experiments in which the government guarantees a job to tackle long-term unemployment. The experiment with the Melkert jobs was carried out in the 1990s. Recently the municipality of Groningen implemented a project in which long-term unemployed people are offered a so-called basic job. The research results of this project demonstrate that the target group can do productive work on a regular basis and that basic jobs have a net positive social added value based on a Social Cost Benefit Analysis (SCBA).In this article we also pay attention to the recent academic debate betweenan unconditional basic income (BIG) and a job guarantee (JG).
Single-Use Plastics (SUPs) are at the centre of European Union Agenda aiming at reducing the plastic soup with the EU Directive 2019/904. SUPs reduction is pivotal also in the Dutch Government Agenda for the transition to a Circular Economy by 2050. Worldwide the data on SUPs use and disposal are impressive: humans use around 1.2 million plastic bottles per minute; approximately 91% of plastic is not recycled (www.earthday.org/fact-sheet-single-use-plastics/). While centralised processes of waste collection, disposal, and recycling strive to cope with such intense use of SUPs, the opportunities and constraints of establishing a networked grid of facilities enacting processes of SUPs collection and recycling with the active involvement of local community has remained unexplored. The hospitality sector is characterised by a widespread capillary network of small hospitality firms nested in neighbourhoods and rural communities. Our research group works with small hospitality firms, different stakeholders, and other research groups to prompt the transition of the hospitality sector towards a Circular Economy embracing not only the environmental and economic dimensions but also the social dimension. Hence, this project explores the knowledge and network needed to build an innovative pilot allowing to close the plastic loop within a hospitality facility by combining a 3D printing process with social inclusiveness. This will mean generating key technical and legal knowledge as well as a network of strategic experts and stakeholders to be involved in an innovative pilot setting a 3D printing process in a hospitality facility and establishing an active involvement of the local community. Such active involvement of the local inhabitants will be explored as SUPs collectors and end-users of upcycled plastics items realised with the 3D printer, as well as through opportunities of vocational training and job opportunities for citizens distant from the job market.
This project addresses the critical issue of staff shortages and training inefficiencies in the hospitality industry, particularly focusing on the hotel sector. It connects with the urgent need for innovative, and effective training solutions to equip (inexperienced) staff with hospitality skills, thereby improving service quality and sustainable career prospects in the hotel industry. The project develops and tests immersive technologies (augmented and virtual reality, AR/VR) tailored to meet specific training needs of hotels. Traditional training methods such as personal trainings, seminars, and written manuals are proving inadequate in terms of learning effectiveness and job readiness, leading to high working pressure and poor staff well-being. This project aims to break this cycle by co-creating immersive training methods that promise to be more engaging and effective. Hotelschool The Hague has initiated steps in this direction by exploring AR and VR technologies for hotel staff training. This project builds on these efforts, aiming to develop accessible, immersive training tools specifically designed for the hotel sector. Specifically, this project aims to explore the effectiveness of these immersive trainings, an aspect largely overlooked in the rapid development of immersive technology solutions. The central research question is: How do immersive AR and VR training methods impact job readiness and learning effectiveness in the hotel sector? The one-year KIEM project period involves co-creating, implementing, and evaluating immersive training in collaboration with Hotelschool The Hague and Hyatt Andaz Amsterdam Prinsengracht Hotel in real-life settings. The partnership with Warp Industries, a leader in immersive technology, is crucial for the project’s success. Our findings will be co-created and multiplied through relevant sector associations such as House of Hospitality. This project aligns with the MV’s Impact Level 1: Transitions by promoting innovative training strategies that can lead to a fundamental shift in the hospitality industry, thereby enhancing social earning capacities.
Hogeschool Rotterdam wil in samenwerking met IT-Campus en Rotterdamse mkb-bedrijven onderzoeken of de dataskills die studenten in hun opleiding verwerven, aansluiten op de datageletterdheid die van hen als startende professionals wordt verlangd. Om dit te beoordelen vragen we Rotterdamse ondernemers naar de datagedreven uitdagingen en problemen die zij voor zich zien en of zij bij de instroom van startende professionals voldoende kennis en skills zien om die uitdagingen het hoofd te bieden. Met de uitkomsten kunnen kennisinstellingen een helder beeld krijgen van het concept datageletterdheid en hiermee een handvat bieden aan opleidingen om dataskills in de curricula aan te laten sluiten op de behoefte in de arbeidsmarkt van de Metropoolregio Rotterdam-Den Haag (MRDH). We werken toe naar een ontwerp Data Skills-set. Misschien is het beter om te spreken van datacompetenties, hetgeen onderdeel is van de zoektocht in dit onderzoek. Welke terminologie is het meest behulpzaam in het oplijnen van onderwijs en werkveld op het gebied van data: geletterdheid, competenties, skills of een combinatie daarvan. Is het van belang of juist contraproductief om daarin (merk)specifieke tooling een plek te geven? We vragen ons ook af of datageletterdheid als een generiek concept domeinoverstijgend bruikbaar is, bijvoorbeeld tussen het economisch en technisch domein. De verwachting is dat de bevindingen op het gebied van datageletterdheid in de regio Rotterdam te generaliseren zijn naar andere delen van Nederland. Ook die hypothese willen we verkennen in dit onderzoek. Door het beantwoorden van deze vragen willen we een start maken voor het ontwerp van een instrument voor professionele ontwikkeling in het werkveld als ook een referentiekader voor het gesprek met onderwijspartners en overheid. Daarnaast kan zo’n ontwerp DataSkills-set ervoor zorgen dat de onderwijsdomeinen in gesprek blijven met elkaar ten aanzien van nieuwe methoden en onderwijsvormen voor vaardigheden.