Dienst van SURF
© 2025 SURF
City logistics is one of the causes of today's road congestion in our cities, but at the same time its efficiency is affected by the traffic problems. The driving behaviour and mission strategies used by vans and lorries operating in urban areas usually does not exploit modern infomobility solutions. CityLog, a project co-funded by the European Commission within the 7th Framework Programme, aims at increasing the sustainability and the efficiency of urban goods deliveries through an adaptive and integrated mission management and by innovative vehicle features. More particularly, CityLog integrates a wide range of logistics-oriented infomobility services that include an optimized pre-trip planner, a new type of navigation system based on enhanced maps and a last mile parcel tracking service to avoid unsuccessful deliveries. © 2011 IEEE.
LINK
Binnen het projectonderwijs wordt nog vaak drooggezwommen. Enerzijds door de verstrekte projectopdrachten anderzijds door de suboptimalisatie van oplossingen. Deze zijn namelijk sterk afhankelijk van de verbonden modules en docenten. In de praktijk zijn de oplossingen echter altijd een afweging van tijd, geld en kwaliteit. Onze Human Engineers leren om daar op een goede manier mee om te gaan. Dit door de integratiemodule Integrated Product Development (IPD). IPD is een multidisciplinair project waarbij studenten van verschillende Fontys Instituten werken aan de commercikle en technische uitwerking van een bedrijfsopdracht. Marktonderzoek, doelgroep bepaling en productspecificatie zijn een vast onderdeel van een IPD project evenals het ontwerpen en bouwen van een prototype en het financieel onderbouwen van een Go/NO go advies aan de ondernemer. Het project vindt plaats in het laatste onderwijssemester, net vssr het afstuderen en is dus te zien als een open project met een bedrijf als opdrachtgever. De Human Engineering studenten zijn in deze projecten de verbindende schakel. De specialisten in de projectgroepen, de technische studenten, willen nogal eens zoeken naar mooie oplossingen vooral in technische zin. Daarbij gaan ze vaak volledig voorbij aan het belang van de ondernemer (winst maken) en het belang van de klant (kwaliteit en bedieningsgemak). Ook het projectwerk heeft een enorme sprong vooruit gemaakt door het team uit te breiden met Human Engineers. De Human Engineering studenten focussen vooral ook op het halen van targets (kosten) en deadlines (tijd), het maken en nakomen van afspraken en de communicatie binnen de groep en naar buiten toe (ondernemer en klant). Huidige studenten en alumni geven aan dat het project zeer realistisch is en dat het vergelijkbaar is met problemen die ze in hun werk tegen komen. Zeker blijven doen is hun advies. Organisatorisch vergt het wel een en ander omdat er bijvoorbeeld afstemming dient te komen tussen de verschillende instituten met betrekking tot: beoordeling van de studenten, afstemmen van lesroosters en vergoeding voor docenten. Ook het onderhouden van bedrijfsrelaties om bijvoorbeeld aan de opdrachten te komen blijft een moeilijke, tijdrovende zaak.
Introduction The Integrated Recovery Scales (IRS) was developed by the Dutch National Expertise board for routine outcome monitoring with severe mental illnesses. This board aimed to develop a multidimensional recovery measure directed at 1. clinical recovery, 2. physical health, 3. social recovery (work, social contacts, independent living) and 4. existential, personal recovery. The measure had to be short, suited for routine outcome monitoring and present the perspective of both mental health professionals and service users with severe mental illnesses. All aspects are assessed over a period of the pas 6 months. Objectives The objective of this research is validation of the Integral Recovery Scales and to test the revelance for clinical practice and police evaluation. Methods The instrument was tested with 500 individuals with severe mental illnesses (80% individuals with a psychotic disorder), of whom 200 were followed up for 1 year. For the questions concerning clinical recovery, physical health and social recovery mental health care workers conducted semi structured interviews with people living with serious illnesses. The questions concerning personal health were self-rated. We analyzed interrater reliability, convergent and divergent validity and sensitivity to change. Results The instrument has a good validity and is easy to complete for service users and mental health care workers and appropriate for clinical and policy evaluation goals. Conclusions The Integrated Recovery Scales can be a useful instrument for a simple and meaningful routine outcome monitoring. Page: 121
The projectThe overarching goal of DIGNITY, DIGital traNsport In and for socieTY, is to foster a sustainable, integrated and user-friendly digital travel eco-system that improves accessibility and social inclusion, along with the travel experience and daily life of all citizens. The project delves into the digital transport eco-system to grasp the full range of factors that might lead to disparities in the uptake of digitalised mobility solutions by different user groups in Europe. Analysing the digital transition from both a user and provider’s perspective, DIGNITY looks at the challenges brought about by digitalisation, to then design, test and validate the DIGNITY approach, a novel concept that seeks to become the ‘ABCs for a digital inclusive travel system’. The approach combines proven inclusive design methodologies with the principles of foresight analysis to examine how a structured involvement of all actors – local institutions, market players, interest groups and end users – can help bridge the digital gap by co-creating more inclusive mobility solutions and by formulating user-centred policy frameworks.The objectivesThe idea is to support public and private mobility providers in conceiving mainstream digital products or services that are accessible to and usable by as many people as possible, regardless of their income, social situation or age; and to help policy makers formulate long-term strategies that promote innovation in transport while responding to global social, demographic and economic changes, including the challenges of poverty and migration.The missionBy focusing on and involving end-users throughout the process of designing policies, products, or services, it is possible to reduce social exclusion while boosting new business models and social innovation. The end result that DIGNITY is aiming for is an innovative decision support tool that can help local and regional decision-makers formulate digitally inclusive policies and strategies, and digital providers design more inclusive products and services.The approachThe DIGNITY approach combines analysis with concrete actions to make digital mobility services inclusive over the long term. The approach connects users’ needs and requirements with the provision of mobility services, and at the same time connects those services to the institutional framework. It is a multi-phase process that first seeks to understand and bridge the digital gap, and then to test, evaluate and fine-tune the approach, so that it can be applied in other contexts even after the project’s end.Partners: ISINNOVA (Italy), Mobiel 21 (Belgium), Universitat Politechnica deCatalunya Spain), IZT (Germany), University of Cambridge (UK), Factualconsulting (Spain), Barcelona Regional Agencia (Spain), City of Tilburg(Netherlands), Nextbike (Germany), City of Ancona (Italy), MyCicero (Italy),Conerobus (Italy), Vlaams Gewest (Belgium)
Family Dairy Tech Sustainable and affordable stable management systems for family dairy farms in India. An example of Dutch technology that is useful to an ?emerging economy?. Summary Problem The demand for dairy products in India is increasing. Small and medium-sized family farmers want to capitalize on this development and the Indian government wants to support them. Dutch companies offer knowledge and a wide range of products and services to improve dairy housing systems and better milk quality, in which India is interested. However, the Dutch technology is sophisticated and expensive. For a successful entry into this market, entrepreneurs have to develop affordable and robust (?frugal?) systems and products adapted to the Indian climate and market conditions. The external question is therefore: ?How can Dutch companies specialised on dairy housing systems adapt their products and offer these on the Indian market to contribute to sustainable and profitable local dairy farming??. Goal Since 2011, VHL University of Applied Sciences (VHL) is collaborating with a college and an agricultural information center Krishi Vigyan Kendra (KVK), Baramati, Pune district, Maharashtra State India. In this region many small-scale dairy farmers are active. Within this project, KVK wants to support farmers to scale up their farm form one or a few cows up to 15 to 100 cows, with a better milk quality. In this innovative project, VHL and Saxion Universities of Applied Sciences, in collaboration with KVK and several Dutch companies want to develop integrated solutions for the growing number of dairy farms in the State of Maharashtra, India. The research questions are: 1. "How can, by smart combinations of existing and new technologies, the cow-varieties and milk- and stable-management systems in Baramati, India, for family farmers be optimized in an affordable and sustainable way?" 2. "What are potential markets in India for Dutch companies in the field of stable management and which innovative business models can support entering this market?" Results The intended results are: 1. A design of an integral stable management system for small and medium-sized dairy farms in India, composed of modified Dutch technologies. 2. A cattle improvement programme for robust cows that are adapted to the conditions of Maharashtra. 3. An advice to Dutch entrepreneurs how to develop their market position in India for their technologies. 4. An advice to Indian family farmers how they can increase their margins in a sustainable way by employing innovative technologies.
Smart city technologies, including artificial intelligence and computer vision, promise to bring a higher quality of life and more efficiently managed cities. However, developers, designers, and professionals working in urban management have started to realize that implementing these technologies poses numerous ethical challenges. Policy papers now call for human and public values in tech development, ethics guidelines for trustworthy A.I., and cities for digital rights. In a democratic society, these technologies should be understandable for citizens (transparency) and open for scrutiny and critique (accountability). When implementing such public values in smart city technologies, professionals face numerous knowledge gaps. Public administrators find it difficult to translate abstract values like transparency into concrete specifications to design new services. In the private sector, developers and designers still lack a ‘design vocabulary’ and exemplary projects that can inspire them to respond to transparency and accountability demands. Finally, both the public and private sectors see a need to include the public in the development of smart city technologies but haven’t found the right methods. This proposal aims to help these professionals to develop an integrated, value-based and multi-stakeholder design approach for the ethical implementation of smart city technologies. It does so by setting up a research-through-design trajectory to develop a prototype for an ethical ‘scan car’, as a concrete and urgent example for the deployment of computer vision and algorithmic governance in public space. Three (practical) knowledge gaps will be addressed. With civil servants at municipalities, we will create methods enabling them to translate public values such as transparency into concrete specifications and evaluation criteria. With designers, we will explore methods and patterns to answer these value-based requirements. Finally, we will further develop methods to engage civil society in this processes.