Dienst van SURF
© 2025 SURF
Over the past decades, various types of permeable pavements have been implemented in different municipalities in the Netherlands in order to improve infiltration capacity in urban areas and therewith being able to better treat stormwater runoff. With initial promising results, this adaptation measure seemed to be the solution for urban flooding due to extreme precipitation.However, in practice, foreseen infiltration capacities were usually not met, often due to unknown reasons. To better understand the functioning of permeable pavements in practice, we have studied - as part of the project Infiltrating Cities - over 100 existing permeable pavement installations in the Netherlands. At each location, infiltration capacity was tested through a full-scale infiltration testing procedure (flooded area about 40 m2) while conditional on-site factors were collected (location, age, type of permeable pavement, street-type, traffic density, vicinity of urban green, regular maintenance regime, etc.). By coupling this information we analyzed how these factors influence the infiltration capacity of permeable pavements in practice, e.g. through accelerated deterioration of infiltration capacity through time. In addition, we evaluated for a selected number of installations, how various types of maintenance may counteract this deterioration, hence improving the infiltration capacity of permeable pavements.
Infiltrating pavements are potentially effective climate adaptation measures to counteract arising challenges related to flooding and drought in urban areas. However, they are susceptible to clogging causing premature degradation. As part of the Dutch Delta Plan, Dutch municipalities were encouraged to put infiltrating pavements into practice. Disappointing experiences made a significant number of municipalities decide, however, to stop further implementation. A need existed to better understand how infiltrating pavements function in practice. Through 81 full-scale infiltration tests, we investigated the performance of infiltrating pavements in practice. Most pavements function well above Dutch and international standards. However, variation was found to be high. Infiltration rates decrease over time. Age alone, however, is not a sufficient explanatory factor. Other factors, such as environmental or system characteristics, are of influence here. Maintenance can play a major role in preserving/improving the performance of infiltrating pavements in practice. While our results provide the first indication of the functioning of infiltrating pavement in practice, only with multi-year measurements following a strict monitoring protocol can the longer-term effects of environmental factors and maintenance actually be determined, providing the basis for the development of an optimal maintenance schedule and associated cost–benefit assessments to the added value of this type of climate adaptation.
Permeable pavements are a type of sustainable urban drainage system (SUDS)technique that are used around the world to infiltrate and treat urban Stormwater runoff and to minimize runoff volumes. Urban stormwater runoff contains significant concentrations of suspended sediments that can cause clogging and reduce the infiltration capacity and effectiveness of permeable pavements. It is important for stormwater managers to be able to determine when the level of clogging has reached an unacceptable level, so that they can schedule maintenance or replacement activities as required. Newly-installed permeable pavements in the Netherlands must demonstrate a minimum infiltration capacity of 194 mm/h (540 l/s/ha). Other commonly used permeable pavement guidelines in the Netherlands recommend that maintenance is undertaken on permeable pavements when the infiltration falls below 0.50 m/d (20.8 mm/h). This study used a newly-developed, full-scale infiltrationtest procedure to evaluate the infiltration performance of eight permeable pavements in five municipalities that had been in service for over seven years in the Netherlands. The determined infiltration capacities vary between 29 and 342 mm/h. Two of the eight pavements show an infiltration capacity higher than 194 mm/h, and all infiltration capacities are higher than 20.8 mm/h. According to the guidelines, this suggests that none of the pavements tested in this study would require immediate maintenance.