Dienst van SURF
© 2025 SURF
Re-structuring of a Dutch mono-industrial region; example of TwenteTable of contents of the chapter Introduction Geography and location of Twente Industrialization of Twente and development of the Textile Industry Decline of the Textile Industry Restructuring Twente: arguments for a regional innovation strategy Moving towards a more diversified economy Stronger co-operation between governments, universities, and industries The role of universities and the example of ‘Kennispark Twente’ Further regional and international co-operation Twente today
MULTIFILE
SummaryConstructed wetlands have been used for decades on industrial areas to treat stormwater. European regulations and local ambitions for water quality dictate lower emissions before the water is discharged to the drainage system, surface water or infiltrated to ground water. The increase in the required removal efficiency requires a better understanding of the characteristics of pollutants and cost-effective performance of constructed wetlands. In this chapter detailed characteristics of stormwater from (industrial) areas is given together with monitored removal efficiencies and the cost of constructed wetlands. Some case studies with constructed wetlands are selected and reviewed in this chapter which can be regarded as Best Management Practices (BMPs). In most cases the constructed wetlands are not monitored in detail but perceived to be effective. Long-term performance, however, remains an issue. New monitoring techniques such as underwater drones and full scale testing can be applied to get new insights on optimizing the hydraulic capacity and removal efficiency of wetlands. Last but not least: international knowledge exchange on constructed wetlands and new monitoring techniques can be promoted by interactive online tools.
The key role of Restructing Agencies in achieving high private investments and creating employment. Effective revitalization leads to economically vital and future proof industrial parks. This short paper tells how revitalization can be effectively performed. Preliminary results are presented of a four year study of the Restructuring Agency of Overijssel, active in revitalization in the Province of Overijssel in the Netherlands. The study identifies, presents and reflects on the effectiveness of working methods used by the restructuring agency in seven revitalization projects of industrial parks. The value of continuously focusing on willingness to invest is identified as a key working method and success factor. Other working methods illustrate the importance and effectiveness of goal-oriented choices that aim at snowball effects, the use of dynamic opportunity maps, choosing own role based on complementarity, always developing business cases that contribute to value cases, and managing the important relationship between effective working methods and capability of individuals and organizations. Ongoing research aims at further underpinning provisional conclusions about the use and effectiveness of working methods, and the development of a toolbox for practitioners that will contain and integrate capability profiles, working methods, and the related change management approach.
MULTIFILE
Electrohydrodynamic Atomization (EHDA), also known as Electrospray (ES), is a technology which uses strong electric fields to manipulate liquid atomization. Among many other areas, electrospray is currently used as an important tool for biomedical applications (droplet encapsulation), water technology (thermal desalination and metal recovery) and material sciences (nanofibers and nano spheres fabrication, metal recovery, selective membranes and batteries). A complete review about the particularities of this technology and its applications was recently published in a special edition of the Journal of Aerosol Sciences [1]. Even though EHDA is already applied in many different industrial processes, there are not many controlling tools commercially available which can be used to remotely operate the system as well as identify some spray characteristics, e.g. droplet size, operational mode, droplet production ratio. The AECTion project proposes the development of an innovative controlling system based on the electrospray current, signal processing & control and artificial intelligence to build a non-visual tool to control and characterize EHDA processes.
Structural colour (SC) is created by light interacting with regular nanostructures in angle-dependent ways resulting in vivid hues. This form of intense colouration offers commercial and industrial benefits over dyes and other pigments. Advantages include durability, efficient use of light, anti-fade properties and the potential to be created from low cost materials (e.g. cellulose fibres). SC is widely found in nature, examples include butterflies, squid, beetles, plants and even bacteria. Flavobacterium IR1 is a Gram-negative, gliding bacterium isolated from Rotterdam harbour. IR1 is able to rapidly self-assemble into a 2D photonic crystal (a form of SC) on hydrated surfaces. Colonies of IR1 are able to display intense, angle-dependent colours when illuminated with white light. The process of assembly from a disordered structure to intense hues, that reflect the ordering of the cells, is possible within 10-20 minutes. This bacterium can be stored long-term by freeze drying and then rapidly activated by hydration. We see these properties as suiting a cellular reporter system quite distinct from those on the market, SC is intended to be “the new Green Fluorescent Protein”. The ability to understand the genomics and genetics of SC is the unique selling point to be exploited in product development. We propose exploiting SC in IR1 to create microbial biosensors to detect, in the first instance, volatile compounds that are damaging to health and the environment over the long term. Examples include petroleum or plastic derivatives that cause cancer, birth defects and allergies, indicate explosives or other insidious hazards. Hoekmine, working with staff and students within the Hogeschool Utrecht and iLab, has developed the tools to do these tasks. We intend to create a freeze-dried disposable product (disposables) that, when rehydrated, allow IR1 strains to sense and report multiple hazardous vapours alerting industries and individuals to threats. The data, visible as brightly coloured patches of bacteria, will be captured and quantified by mobile phone creating a system that can be used in any location by any user without prior training. Access to advice, assay results and other information will be via a custom designed APP. This work will be performed in parallel with the creation of a business plan and market/IP investigation to prepare the ground for seed investment. The vision is to make a widely usable series of tests to allow robust environmental monitoring for all to improve the quality of life. In the future, this technology will be applied to other areas of diagnostics.
The IMPULS-2020 project DIGIREAL (BUas, 2021) aims to significantly strengthen BUAS’ Research and Development (R&D) on Digital Realities for the benefit of innovation in our sectoral industries. The project will furthermore help BUas to position itself in the emerging innovation ecosystems on Human Interaction, AI and Interactive Technologies. The pandemic has had a tremendous negative impact on BUas industrial sectors of research: Tourism, Leisure and Events, Hospitality and Facility, Built Environment and Logistics. Our partner industries are in great need of innovative responses to the crises. Data, AI combined with Interactive and Immersive Technologies (Games, VR/AR) can provide a partial solution, in line with the key-enabling technologies of the Smart Industry agenda. DIGIREAL builds upon our well-established expertise and capacity in entertainment and serious games and digital media (VR/AR). It furthermore strengthens our initial plans to venture into Data and Applied AI. Digital Realities offer great opportunities for sectoral industry research and innovation, such as experience measurement in Leisure and Hospitality, data-driven decision-making for (sustainable) tourism, geo-data simulations for Logistics and Digital Twins for Spatial Planning. Although BUas already has successful R&D projects in these areas, the synergy can and should significantly be improved. We propose a coherent one-year Impuls funded package to develop (in 2021): 1. A multi-year R&D program on Digital Realities, that leads to, 2. Strategic R&D proposals, in particular a SPRONG/sleuteltechnologie proposal; 3. Partnerships in the regional and national innovation ecosystem, in particular Mind Labs and Data Development Lab (DDL); 4. A shared Digital Realities Lab infrastructure, in particular hardware/software/peopleware for Augmented and Mixed Reality; 5. Leadership, support and operational capacity to achieve and support the above. The proposal presents a work program and management structure, with external partners in an advisory role.