Dienst van SURF
© 2025 SURF
BACKGROUND: The care sector for persons with disabilities considers the physical environment relevant for the quality of life of people with intellectual disabilities. However, scientific evidence is limited. OBJECTIVE: To obtain evidence regarding comforting and encouraging environments and to develop an overview of studies addressing the effect of the physical environment on people with intellectual disabilities. METHODS: A scoping review, accompanied by expert panels and case findings combining scientific evidence and knowledge from practice, was performed to investigate the interaction between challenging behaviour and the physical environment. Between January and March 2020, several scientific databases were searched in the English, Dutch, and German language for relevant studies. Social media, care professionals, and experts in building physics were consulted. RESULTS: Studies on building-related factors as passive interventions and care- or therapy-related interventions could be distinguished. The majority of the studies report on building-related factors such as sound, acoustics, light, and colours and their influence on behaviour. Specific guidelines are lacking on how to adjust the indoor environment to an environment that is safe, comforting and encouraging for people displaying challenging behaviour. Proposed solutions are case-based. CONCLUSION: In future studies individual cases could be studied in a more in-depth manner, aligned and categorised to the building-related factors and to the expressions of challenging behaviour.
LINK
A substantial amount of studies have addressed the influence of sound on human performance. In many of these, however, the large acoustic differences between experimental conditions prevent a direct translation of the results to realistic effects of room acoustic interventions. This review identifies those studies which can be, in principle, translated to (changes in) room acoustic parameters and adds to the knowledge about the influence of the indoor sound environment on people. The review procedure is based on the effect room acoustics can have on the relevant quantifiers of the sound environment in a room or space. 272 papers containing empirical findings on the influence of sound or noise on some measure of human performance were found. Of these, only 12 papers complied with this review's criteria. A conceptual framework is suggested based on the analysis of results, positioning the role of room acoustics in the influence of sound on task performance. Furthermore, valuable insights are pre- sented that can be used in future studies on this topic. Whi le the influence of the sound environment on performance is clearly an issue in many situations, evidence regarding the effectiveness of strategies to control the sound environment by room acoustic design is lacking and should be a focus area in future studies.
To understand how transition across different thermal zones in a building impacts the thermal perception of occupants, the current work examines occupant feedback in two work environments — nursing staff in hospital wards and the workers in an office. Both studies used a mix of subjective surveys and objective measurements. A total of 96 responses were collected from the hospital wards while 142 were collected from the office. The thermal environment in the hospital wards was perceived as slightly warm on the ASHRAE thermal sensation scale (mean TSV = 1.2), while the office workers rated their environment on the cool side (mean TSV = 0.15). The results also show that when the transitions were across temperature differences within 2 °C, the thermal perception was not impacted by the magnitude of the temperature difference — as reflected in occupant thermal sensation and thermal comfort/thermal acceptability vote. This would imply that the effect of temperature steps on thermal perception, if any, within these boundaries, was extremely short lived. These findings go towards establishing the feasibility of heterogeneous indoor thermal environments and thermal zoning of workspaces for human comfort.
De innovatiewerkplaats Campus Design (CD) richt zich op de duurzame ontwikkeling (SDG) van de campus door middel van praktijkgerichte oplossingen en onderzoek. Vanuit het lectoraat Facility Management van de Hanze, werkt CD samen met kennis- en onderwijsinstellingen, overheden en het bedrijfsleven, bijvoorbeeld om de kwaliteit, gastvrijheid en inclusiviteit te verbeteren zodat iedereen zich welkom voelt op de campus. CD streeft naar een betere aansluiting tussen de ruimte en organisatie op de campus; ook de vergroening en biodiversiteit rekenen we daartoe. Dit doen we door praktijkvragen van onderwijsinstellingen en het bedrijfsleven te koppelen aan praktijkgericht onderzoek van onze senior-onderzoekers, onderzoekers, docenten en studenten, onder meer in architectuur, facility management, gastvrijheid, kunsten en vastgoed. Onze multidisciplinaire aanpak is zeer actiegericht; we willen de campuspraktijk écht veranderen en laten zien dat het betaalbaar is én werkt. We zorgen er dus voor dat oplossingen niet alleen theoretisch en empirisch uitstekend onderbouwd zijn, maar vooral ook praktisch toepasbaar en bewijsbaar beter. Door de goede samenwerking met onze partners, genereert CD oplossingen die onderwijsinstellingen inspireren en hen helpen de SDG te implementeren.
A world where technology is ubiquitous and embedded in our daily lives is becoming increasingly likely. To prepare our students to live and work in such a future, we propose to turn Saxion’s Epy-Drost building into a living lab environment. This will entail setting up and drafting the proper infrastructure and agreements to collect people’s location and building data (e.g. temperature, humidity) in Epy-Drost, and making the data appropriately available to student and research projects within Saxion. With regards to this project’s effect on education, we envision the proposal of several derived student projects which will provide students the opportunity to work with huge amounts of data and state-of-the-art natural interaction interfaces. Through these projects, students will acquire skills and knowledge that are necessary in the current and future labor-market, as well as get experience in working with topics of great importance now and in the near future. This is not only aligned with the Creative Media and Game Technologies (CMGT) study program’s new vision and focus on interactive technology, but also with many other education programs within Saxion. In terms of research, the candidate Postdoc will study if and how the data, together with the building’s infrastructure, can be leveraged to promote healthy behavior through playful strategies. In other words, whether we can persuade people in the building to be more physically active and engage more in social interactions through data-based gamification and building actuation. This fits very well with the Ambient Intelligence (AmI) research group’s agenda in Augmented Interaction, and CMGT’s User Experience line. Overall, this project will help spark and solidify lasting collaboration links between AmI and CMGT, give body to AmI’s new Augmented Interaction line, and increase Saxion’s level of education through the dissemination of knowledge between researchers, teachers and students.
The reclaiming of street spaces for pedestrians during the COVID-19 pandemic, such as on Witte de Withstraat in Rotterdam, appears to have multiple benefits: It allows people to escape the potentially infected indoor air, limits accessibility for cars and reduces emissions. Before ordering their coffee or food, people may want to check one of the many wind and weather apps, such as windy.com: These apps display the air quality at any given time, including, for example, the amount of nitrogen dioxide (NO2), a gas responsible for an increasing number of health issues, particularly respiratory and cardiovascular diseases. Ships and heavy industry in the nearby Port of Rotterdam, Europe’s largest seaport, exacerbate air pollution in the region. Not surprisingly, in 2020 Rotterdam was ranked as one of the unhealthiest cities in the Netherlands, according to research on the health of cities conducted by Arcadis. Reducing air pollution is a key target for the Port Authority and the City of Rotterdam. Missing, however, is widespread awareness among citizens about how air pollution links to socio-spatial development, and thus to the future of the port city cluster of Rotterdam. To encourage awareness and counter the problem of "out of sight - out of mind," filmmaker Entrop&DeZwartFIlms together with ONSTV/NostalgieNet, and Rotterdam Veldakademie, are collaborating with historians of the built environment and computer science and public health from TU Delft and Erasmus University working on a spatial data platform to visualize air pollution dynamics and socio-economic datasets in the Rotterdam region. Following discussion of findings with key stakeholders, we will make a pilot TV-documentary. The documentary, discussed first with Rotterdam citizens, will set the stage for more documentaries on European and international cities, focusing on the health effects—positive and negative—of living and working near ports in the past, present, and future.