AIM To examine which instruments used to assess participation of children with acquired brain injury (ABI) or cerebral palsy (CP) align with attendance and/or involvement constructs of participation; and to systematically review measurement properties of these instruments in children with ABI or CP, to guide instrument selection. METHOD Five databases were searched. Instruments that quantified ‘attendance’ and/or ‘involvement’ aspects of participation according to the family of participation-related constructs were selected. Data on measurement properties were extracted and methodological quality of the studies assessed. RESULTS Thirty-seven instruments were used to assess participation in children with ABI or CP. Of those, 12 measured attendance and/or involvement. The reliability, validity, and responsiveness of eight of these instruments were examined in 14 studies with children with ABI or CP. Sufficient measurement properties were reported for most of the measures, but no instrument had been assessed on all relevant properties. Moreover, most psychometric studies have marked methodological limitations. INTERPRETATION Instruments to assess participation of children with ABI or CP should be selected carefully, as many available measures do not align with attendance and/or involvement. Evidence for measurement properties is limited, mainly caused by low methodological study quality. Future studies should follow recommended methodological guidelines.
AIM To examine which instruments used to assess participation of children with acquired brain injury (ABI) or cerebral palsy (CP) align with attendance and/or involvement constructs of participation; and to systematically review measurement properties of these instruments in children with ABI or CP, to guide instrument selection. METHOD Five databases were searched. Instruments that quantified ‘attendance’ and/or ‘involvement’ aspects of participation according to the family of participation-related constructs were selected. Data on measurement properties were extracted and methodological quality of the studies assessed. RESULTS Thirty-seven instruments were used to assess participation in children with ABI or CP. Of those, 12 measured attendance and/or involvement. The reliability, validity, and responsiveness of eight of these instruments were examined in 14 studies with children with ABI or CP. Sufficient measurement properties were reported for most of the measures, but no instrument had been assessed on all relevant properties. Moreover, most psychometric studies have marked methodological limitations. INTERPRETATION Instruments to assess participation of children with ABI or CP should be selected carefully, as many available measures do not align with attendance and/or involvement. Evidence for measurement properties is limited, mainly caused by low methodological study quality. Future studies should follow recommended methodological guidelines.
Size measurement plays an essential role for micro-/nanoparticle characterization and property evaluation. Due to high costs, complex operation or resolution limit, conventional characterization techniques cannot satisfy the growing demand of routine size measurements in various industry sectors and research departments, e.g., pharmaceuticals, nanomaterials and food industry etc. Together with start-up SeeNano and other partners, we will develop a portable compact device to measure particle size based on particle-impact electrochemical sensing technology. The main task in this project is to extend the measurement range for particles with diameters ranging from 20 nm to 20 um and to validate this technology with realistic samples from various application areas. In this project a new electrode chip will be designed and fabricated. It will result in a workable prototype including new UMEs (ultra-micro electrode), showing that particle sizing can be achieved on a compact portable device with full measuring range. Following experimental testing with calibrated particles, a reliable calibration model will be built up for full range measurement. In a further step, samples from partners or potential customers will be tested on the device to evaluate the application feasibility. The results will be validated by high-resolution and mainstream sizing techniques such as scanning electron microscopy (SEM), dynamic light scattering (DLS) and Coulter counter.
The denim industry faces many complex sustainability challenges and has been especially criticized for its polluting and hazardous production practices. Reducing resource use of water, chemicals and energy and changing denim production practices calls for collaboration between various stakeholders, including competing denim brands. There is great benefit in combining denim brands’ resources and knowledge so that commonly defined standards and benchmarks are developed and realized on a scale that matters. Collaboration however, and especially between competitors, is highly complex and prone to fail. This project brings leading denim brands together to collectively take initial steps towards improving the ecological sustainability impact of denim production, particularly by establishing measurements, benchmarks and standards for resource use (e.g. chemicals, water, energy) and creating best practices for effective collaboration. The central research question of our project is: How do denim brands effectively collaborate together to create common, industry standards on resource use and benchmarks for improved ecological sustainability in denim production? To answer this question, we will use a mixed-method, action research approach. The project’s research setting is the Amsterdam Metropolitan Area (MRA), which has a strong denim cluster and is home to many international denim brands and start-ups.
The research proposal aims to improve the design and verification process for coastal protection works. With global sea levels rising, the Netherlands, in particular, faces the challenge of protecting its coastline from potential flooding. Four strategies for coastal protection are recognized: protection-closed (dikes, dams, dunes), protection-open (storm surge barriers), advancing the coastline (beach suppletion, reclamation), and accommodation through "living with water" concepts. The construction process of coastal protection works involves collaboration between the client and contractors. Different roles, such as project management, project control, stakeholder management, technical management, and contract management, work together to ensure the project's success. The design and verification process is crucial in coastal protection projects. The contract may include functional requirements or detailed design specifications. Design drawings with tolerances are created before construction begins. During construction and final verification, the design is measured using survey data. The accuracy of the measurement techniques used can impact the construction process and may lead to contractual issues if not properly planned. The problem addressed in the research proposal is the lack of a comprehensive and consistent process for defining and verifying design specifications in coastal protection projects. Existing documents focus on specific aspects of the process but do not provide a holistic approach. The research aims to improve the definition and verification of design specifications through a systematic review of contractual parameters and survey methods. It seeks to reduce potential claims, improve safety, enhance the competitiveness of maritime construction companies, and decrease time spent on contractual discussions. The research will have several outcomes, including a body of knowledge describing existing and best practices, a set of best practices and recommendations for verifying specific design parameters, and supporting documents such as algorithms for verification.