Thermal comfort -the state of mind, which expresses satisfaction with the thermal environment- is an important aspect of the building design process as modern man spends most of the day indoors. This paper reviews the developments in indoor thermal comfort research and practice since the second half of the 1990s, and groups these developments around two main themes; (i) thermal comfort models and standards, and (ii) advances in computerization. Within the first theme, the PMV-model (Predicted Mean Vote), created by Fanger in the late 1960s is discussed in the light of the emergence of models of adaptive thermal comfort. The adaptive models are based on adaptive opportunities of occupants and are related to options of personal control of the indoor climate and psychology and performance. Both models have been considered in the latest round of thermal comfort standard revisions. The second theme focuses on the ever increasing role played by computerization in thermal comfort research and practice, including sophisticated multi-segmental modeling and building performance simulation, transient thermal conditions and interactions, thermal manikins.
Thermal comfort -the state of mind, which expresses satisfaction with the thermal environment- is an important aspect of the building design process as modern man spends most of the day indoors. This paper reviews the developments in indoor thermal comfort research and practice since the second half of the 1990s, and groups these developments around two main themes; (i) thermal comfort models and standards, and (ii) advances in computerization. Within the first theme, the PMV-model (Predicted Mean Vote), created by Fanger in the late 1960s is discussed in the light of the emergence of models of adaptive thermal comfort. The adaptive models are based on adaptive opportunities of occupants and are related to options of personal control of the indoor climate and psychology and performance. Both models have been considered in the latest round of thermal comfort standard revisions. The second theme focuses on the ever increasing role played by computerization in thermal comfort research and practice, including sophisticated multi-segmental modeling and building performance simulation, transient thermal conditions and interactions, thermal manikins.
Study goal: This study was carried out to answer the following research question: which motivation do healthy volunteers have to participate in phase I clinical trials? - Methods: A literature search was done through Google Scholar and Academic Search Premier, followed by three interviews with volunteers who had recently concluded their participation in a (non-commercial) phase I trial. - Results: Our literature search revealed mainly commercial motives for volunteers to participate in phase I clinical trials. The interviews (with volunteers in a non-commercial trial) showed that other factors may also play a decisive role, such as: (1) wish to support the investigator (2) wish to contribute to science, (3) access to more/better health care (4) sociability: possibility to relax and to communicate with other participants (5) general curiosity. Precondition is that risks and burden are deemed acceptable. - Conclusions: financial remuneration appears to be the predominant motive to participate voluntarily in a clinical trial. Other reasons were also mentioned however, such as general curiosity, the drive to contribute to science and the willingness to help the investigator. In addition, social reasons were given such as possibility to relax and to meet other people. Potential subjects state that they adequately assess the (safety) risks of participating in a trial as part of their decision process.