Dienst van SURF
© 2025 SURF
The real-time simulation of human crowds has many applications. In a typical crowd simulation, each person ('agent') in the crowd moves towards a goal while adhering to local constraints. Many algorithms exist for specific local ‘steering’ tasks such as collision avoidance or group behavior. However, these do not easily extend to completely new types of behavior, such as circling around another agent or hiding behind an obstacle. They also tend to focus purely on an agent's velocity without explicitly controlling its orientation. This paper presents a novel sketch-based method for modelling and simulating many steering behaviors for agents in a crowd. Central to this is the concept of an interaction field (IF): a vector field that describes the velocities or orientations that agents should use around a given ‘source’ agent or obstacle. An IF can also change dynamically according to parameters, such as the walking speed of the source agent. IFs can be easily combined with other aspects of crowd simulation, such as collision avoidance. Using an implementation of IFs in a real-time crowd simulation framework, we demonstrate the capabilities of IFs in various scenarios. This includes game-like scenarios where the crowd responds to a user-controlled avatar. We also present an interactive tool that computes an IF based on input sketches. This IF editor lets users intuitively and quickly design new types of behavior, without the need for programming extra behavioral rules. We thoroughly evaluate the efficacy of the IF editor through a user study, which demonstrates that our method enables non-expert users to easily enrich any agent-based crowd simulation with new agent interactions.
MULTIFILE
We used a validated agent-based model—Socio-Emotional CONcern DynamicS (SECONDS)—to model real-time playful interaction between a child diagnosed with Autism Spectrum Disorders (ASD) and its parent. SECONDS provides a real-time (second-by-second) virtual environment that could be used for clinical trials and testingprocess-orientedexplanationsofASDsymptomatology.Weconductednumerical experiments with SECONDS (1) for internal model validation comparing two parental behavioral strategies for stimulating social development in ASD (play-centered vs. initiative-centered) and (2) for empirical case-based model validation. We compared 2,000 simulated play sessions of two particular dyads with (second-by-second) time-series observations within 29 play sessions of a real parent-child dyad with ASD on six variables related to maintaining and initiating play. Overall, both simuladistributions. Given the idiosyncratic behaviors expected in ASD, the observed correspondence is non-trivial. Our results demonstrate the applicability of SECONDS to parent-child dyads in ASD. In the future, SECONDS could help design interventions for parental care in ASDted dyads provided a better fit to the observed dyad than reference null