Dienst van SURF
© 2025 SURF
Physical activity is crucial in human life, whether in everyday activities or elite sports. It is important to maintain or improve physical performance, which depends on various factors such as the amount of physical activity, the capability, and the capacity of the individual. In daily life, it is significant to be physically active to maintain good health, intense exercise is not necessary, as simple daily activities contribute enough. In sports, it is essential to balance capacity, workload, and recovery to prevent performance decline or injury.With the introduction of wearable technology, it has become easier to monitor and analyse physical activity and performance data in daily life and sports. However, extracting personalised insights and predictions from the vast and complex data available is still a challenge.The study identified four main problems in data analytics related to physical activity and performance: limited personalised prediction due to data constraints, vast data complexity, need for sensitive performance measures, overly simplified models, and missing influential variables. We proposed end investigated potential solutions for each issue. These solutions involve leveraging personalised data from wearables, combining sensitive performance measures with various machine learning algorithms, incorporating causal modelling, and addressing the absence of influential variables in the data.Personalised data, machine learning, sensitive performance measures, advanced statistics, and causal modelling can help bridge the data analytics gap in understanding physical activity and performance. The research findings pave the way for more informed interventions and provide a foundation for future studies to further reduce this gap.
LINK
In this study, we investigated the effects of wearing a police uniform and gear on officers’ performance during the Physical Competence Test (PCT) of the Dutch National Police. In a counterbalanced within-subjects design, twenty-seven police officers performed the PCT twice, once wearing sportswear and once wearing a police uniform. The results showed clear indications that wearing a police uniform influenced the performance on the PCT. Participants were on average 14 seconds slower in a police uniform than in sportswear. Furthermore, performing the test in uniform was accompanied by higher RPE-scores and total physiological load. It seems that wearing a police uniform during the test diminishes the discrepancy between physical fitness needed to pass the simulated police tasks in the PCT and the job-specific physical fitness that is required during daily police work. This suggests that wearing a police uniform during the test will increase the representativeness of the testing environment for the work field.
This paper investigates whether encouraging children to become more physically active in their everyday life affects their primary school performance. We use data from a field quasi‐experiment called the Active Living Program, which aimed to increase active modes of transportation to school and active play among 8‐ to 12‐year‐olds living in low socioeconomic status (SES) areas in the Netherlands. Difference‐in‐differences estimations reveal that while the interventions increase time spent on physical activity during school hours, they negatively affect school performance, especially among the worst‐performing students. Further analyses reveal that increased restlessness during instruction time is a potential mechanism for this negative effect. Our results suggest that the commonly found positive effects of exercising or participating in sports on educational outcomes may not be generalizable to physical activity in everyday life. Policymakers and educators who seek to increase physical activity in everyday life need to weigh the health and well‐being benefits against the probability of increasing inequality in school performance.
Today, embedded devices such as banking/transportation cards, car keys, and mobile phones use cryptographic techniques to protect personal information and communication. Such devices are increasingly becoming the targets of attacks trying to capture the underlying secret information, e.g., cryptographic keys. Attacks not targeting the cryptographic algorithm but its implementation are especially devastating and the best-known examples are so-called side-channel and fault injection attacks. Such attacks, often jointly coined as physical (implementation) attacks, are difficult to preclude and if the key (or other data) is recovered the device is useless. To mitigate such attacks, security evaluators use the same techniques as attackers and look for possible weaknesses in order to “fix” them before deployment. Unfortunately, the attackers’ resourcefulness on the one hand and usually a short amount of time the security evaluators have (and human errors factor) on the other hand, makes this not a fair race. Consequently, researchers are looking into possible ways of making security evaluations more reliable and faster. To that end, machine learning techniques showed to be a viable candidate although the challenge is far from solved. Our project aims at the development of automatic frameworks able to assess various potential side-channel and fault injection threats coming from diverse sources. Such systems will enable security evaluators, and above all companies producing chips for security applications, an option to find the potential weaknesses early and to assess the trade-off between making the product more secure versus making the product more implementation-friendly. To this end, we plan to use machine learning techniques coupled with novel techniques not explored before for side-channel and fault analysis. In addition, we will design new techniques specially tailored to improve the performance of this evaluation process. Our research fills the gap between what is known in academia on physical attacks and what is needed in the industry to prevent such attacks. In the end, once our frameworks become operational, they could be also a useful tool for mitigating other types of threats like ransomware or rootkits.
This book discusses whether, and if so, how facility management (FM) can contribute toeducational achievements at Dutch higher education institutions. Although there is increasingevidence that the quality of the lecturer is decisive for the performance and development ofstudents (Marzano 2007; Mourshed, Chijioke and Barber 2010), and in addition, educationalleadership can shape the necessary boundary conditions for these primary actors to succeed,nowadays this must be considered as a too narrow conception of what good education is allabout. Up to date, in literature there is a lively debate about the effective use of facilitydesign, as a mixture of designed features of physical facilities and services, to contribute toeducation as well. We have seen many examples of the so-called human factor beingnegatively influenced by seemingly fringe events, but that suddenly appears to beprecondition for education. Too warm, too cold, too crowded, too loud, too messy, and noidea why this device doesn’t work are phrases that come to mind. We now know that the builtschool environment and facility services that are offered are among the elements that caninfluence good education. The evidence comes from a multiple disciplines, such asenvironmental-psychology (Durán-Narucki 2008; Hygge and Knez 2001), medicine(Hutchinson 2003), educational research (Blackmore et al. 2011; Oblinger 2006; Schneider2002; Temple 2007), and real estate and facility management (Daisey, Angell and Apte 2003;Duyar 2010; Barrett et al. 2013). Considering all the above, there seems to be a scientificblack box with respect to the relatively new scientific discipline of FM. Deeply rooted inpractice, the abstractions that have existed until now have hardly led to a fundamentalunderstanding of the contribution of FM to education. Therefore, the main objective of thisbook is as follows.
The PhD research by Joris Weijdom studies the impact of collective embodied design techniques in collaborative mixed-reality environments (CMRE) in art- and engineering design practice and education. He aims to stimulate invention and innovation from an early stage of the collective design process.Joris combines theory and practice from the performing arts, human-computer interaction, and engineering to develop CMRE configurations, strategies for its creative implementation, and an embodied immersive learning pedagogy for students and professionals.This lecture was given at the Transmedia Arts seminar of the Mahindra Humanities Center of Harvard University. In this lecture, Joris Weijdom discusses critical concepts, such as embodiment, presence, and immersion, that concern mixed-reality design in the performing arts. He introduces examples from his practice and interdisciplinary projects of other artists.About the researchMultiple research areas now support the idea that embodiment is an underpinning of cognition, suggesting new discovery and learning approaches through full-body engagement with the virtual environment. Furthermore, improvisation and immediate reflection on the experience itself, common creative strategies in artist training and practice, are central when inventing something new. In this research, a new embodied design method, entitled Performative prototyping, has been developed to enable interdisciplinary collective design processes in CMRE’s and offers a vocabulary of multiple perspectives to reflect on its outcomes.Studies also find that engineering education values creativity in design processes, but often disregards the potential of full-body improvisation in generating and refining ideas. Conversely, artists lack the technical know-how to utilize mixed-reality technologies in their design process. This know-how from multiple disciplines is thus combined and explored in this research, connecting concepts and discourse from human-computer interaction and media- and performance studies.This research is a collaboration of the University of Twente, Utrecht University, and HKU University of the Arts Utrecht. This research is partly financed by the Dutch Research Council (NWO).Mixed-reality experiences merge real and virtual environments in which physical and digital spaces, objects, and actors co-exist and interact in real-time. Collaborative Mix-Reality Environments, or CMRE's, enable creative design- and learning processes through full-body interaction with spatial manifestations of mediated ideas and concepts, as live-puppeteered or automated real-time computer-generated content. It employs large-scale projection mapping techniques, motion-capture, augmented- and virtual reality technologies, and networked real-time 3D environments in various inter-connected configurations.This keynote was given at the IETM Plenary meeting in Amsterdam for more than 500 theatre and performing arts professionals. It addresses the following questions in a roller coaster ride of thought-provoking ideas and examples from the world of technology, media, and theatre:What do current developments like Mixed Reality, Transmedia, and The Internet of Things mean for telling stories and creating theatrical experiences? How do we design performances on multiple "stages" and relate to our audiences when they become co-creators?Contactjoris.weijdom@hku.nl / LinkedIn profileThis research is part of the professorship Performative Processes