Dienst van SURF
© 2025 SURF
Purpose – The purposes of this paper are to 1) give an overview of the prevalence of HR practices that are used to retain vital older workers in health organizations, 2) to examine the evaluations of those HR practices, and 3) to determine the wishes for HR practices in three different target groups:older workers, line managers and HR professionals.Design/methodoly/approach - An inventory case study was conducted based on 51 interviews with older workers, line managers and HR professionals working in 15 hospitals and nursing and care organizations.Findings - Our results showed that maintenance HR practices focused on retaining older workers in their current jobs, in comparison with development HR practices, are by far more prevalent. In addition, maintenance and development HR practices, in general, are assessed being successful.Although wishes appeared to be strongly related to development HR practices, maintenance HR practices are mentioned as well.Originality/value - This paper aims to give an overview of the prevalence of HR practices used to retain older workers in health care organizations vital at work, which practices are evaluated as successful from not only line managers’ and HRM perspective, but from the older workers themselves as well.
Background: The transformation in global demography and the shortage of health care workers require innovation and efficiency in the field of health care. Digital technology can help improve the efficiency of health care. The Mercury Advance SMARTcare solution is an example of digital technology. The system is connected to a hybrid mattress and is able to detect patient movement, based on which the air pump either starts automatically or sends a notification to the app. Barriers to the adoption of the system are unknown, and it is unclear if the solution will be able to support health care workers in their work. Objective: This study aims to gain insight into health care workers’ expectations of factors that could either hamper or support the adoption of the Mercury Advance SMARTcare unit connected to a Mercury Advance mattress to help prevent patients from developing pressure injuries in hospitals and long-term care facilities. Methods: We conducted a generic qualitative study from February to December 2022. Interviews were conducted, and a focus group was established using an interview guide of health care workers from both the United Kingdom and the Netherlands. Thematic analysis was performed by 2 independent researchers. Results: A total of 14 participants took part in the study: 6 (43%) participants joined the focus group, and 8 (57%) participants took part in the individual interviews. We identified 13 factors based on four themes: (1) factors specifically related to SMARTresponse, (2) vision on innovation, (3) match with health care activities, and (4) materials and resources involved. Signaling function, SMARTresponse as prevention, patient category, representatives, and implementation strategy were identified as facilitators. Perception of patient repositioning, accessibility to pressure injury aids, and connectivity were identified as barriers. Conclusions: Several conditions must be met to enhance the adoption of the Mercury Advance SMARTcare solution, including the engagement of representatives during training and a reliable wireless network. The identified factors can be used to facilitate the implementation process. JMIR Nursing 2024;7:e47992
Perceptions and values of care professionals are critical in successfully implementing technology in health care. The aim of this study was threefold: (1) to explore the main values of health care professionals, (2) to investigate the perceived influence of the technologies regarding these values, and (3) the accumulated views of care professionals with respect to the use of technology in the future. In total, 51 professionals were interviewed. Interpretative phenomenological analysis was applied. All care professionals highly valued being able to satisfy the needs of their care recipients. Mutual inter-collegial respect and appreciation of supervisors was also highly cherished. The opportunity to work in a careful manner was another important value. Conditions for the successful implementation of technology involved reliability of the technology at hand, training with team members in the practical use of new technology, and the availability of a help desk. Views regarding the future of health care were mainly related to financial cut backs and with a lower availability of staff. Interestingly, no spontaneous thoughts about the role of new technology were part of these views. It can be concluded that professionals need support in relating technological solutions to care recipients' needs. The role of health care organisations, including technological expertise, can be crucial here.
This proposal is a resubmission of an earlier proposal (Dossier nr: GOCH.KIEM.KGC02.079) which was not approved because of the too ambitious planning. As advised by the commission, the focus is kept only on the recycling of the mattress cover. The Netherlands has 180,000+ waterproof mattresses in the healthcare sector, of which yearly 40,000+ mattresses are discarded. Owing to the rapidly aging population it is expected to increase the demand for these waterproof mattresses in the consumer sector as well. Considering the complex nature of functional mattresses, these valuable resources are partly incinerated. To achieve a circular economy, Dutch Government aims for a 50% reduction in the use of primary raw materials in five key economic sectors including ‘consumer products’ by 2030. Within the scope of this research, Saxion together with partners (CFC BV, Deron BV, MRE BV & Klieverik Heli BV) will bring emphasis on Recycling (sustainable chemistry) of mattress covers. Other aspects such as reuse and re-designing are beyond the scope of this project proposal, for which a bigger consortium will be built during the course of this project. A case under study is a water-impermeable mattress cover made of 100% polyester with polyurethane (PU) coatings. The goal is to enable the circular use of textiles with (multilayer) ‘coatings’, which are not recyclable yet. These ‘coatings’ comprise functional coatings as well as adhesion layers. Therefore, novel triggerable molecular systems and the corresponding recycling processes will be developed. The coatings will be activated by a specific trigger (bio)-chemical solvation, heat, pressure, humidity, microwave, or combination of thereof. The emphasis is to develop a scalable coating removal process. Learnings will be used to build larger (inter)-national consortia to develop multiple industry closed-loop solutions required for 100% mattress circularity with desired functionality. The generated knowledge will be used for education at Saxion.
To optimize patient care, it is vital to prevent infections in healthcare facilities. In this respect, the increasing prevalence of antibiotic-resistant bacterial strains threatens public healthcare. Current gold standard techniques are based on classical microbiological assays that are time consuming and need complex expensive lab environments. This limits their use for high throughput bacterial screening to perform optimal hygiene control. The infection prevention workers in hospitals and elderly nursing homes underline the urgency of a point-of-care tool that is able to detect bacterial loads on-site in a fast, precise and reliable manner while remaining with the available budgets. The aim of this proposal titled SURFSCAN is to develop a novel point-of-care tool for bacterial load screening on various surfaces throughout the daily routine of professionals in healthcare facilities. Given the expertise of the consortium partners, the point-of-care tool will be based on a biomimetic sensor combining surface imprinted polymers (SIPs), that act as synthetic bacterial receptors, with a thermal read-out strategy for detection. The functionality and performance of this biomimetic sensor has been shown in lab conditions and published in peer reviewed journals. Within this proposal, key elements will be optimized to translate the proof of principle concept into a complete clinical prototype for on-site application. These elements are essential for final implementation of the device as a screening and assessment tool for scanning bacterial loads on surfaces by hospital professionals. The research project offers a unique collaboration among different end-users (hospitals and SMEs), and knowledge institutions (Zuyd University of Applied Sciences, Fontys University of Applied Sciences and Maastricht Science Programme, IDEE-Maastricht University), which guarantees transfer of fundamental knowledge to the market and end-user needs.