Dienst van SURF
© 2025 SURF
The number of Electric Vehicles (EVs) is expected to increase exponentially in the coming years. The growing presence of charging points generates a multitude of interactions between EV users, particularly in metropolitan areas where a charging infrastructure is largely part of the public domain. There is a current knowledge gap as to how current decisions on charging infrastructure deployment affect both current and future infrastructure performance. In the thesis an attempt is made to bridge this knowledge gap by creating a deeper understanding of the relation between charging behavior, charging infrastructure deployment, and performance.The results demonstrate shown how both strategic and demand-drive deployment strategies have an effect on performance metrics. In a case study in the Netherlands it was found that during the initial deployment phase, strategic Charging Points (CPs) facilitate EV users better than demand driven deployment. As EV user adoption increased, demand-driven CPs show to outperform strategic CPs.This thesis further shows that there are 9 EV user types each with distinct difference distinct behavior in terms of charging frequency and mean energy uptake, both of which relate to aggregate CP performance and that user type composition, interactions between users and battery size play an important role in explaining performance of charging infrastructure.A validated data-driven agent-based model was developed to explore effects of interactions in the EV system and how they influence performance. The simulation results demonstrate that there is a non-linear relation between system utilization and inconvenience even at the base case scenario. Also, a significant rise of EV user population will lead to an occupancy of non-habitual charging at the expense of habitual EV users, which leads to an expected decline of occupancy for habitual EV users.Additional simulations studies support the hypothesis that several Complex Systems properties are currently present and affecting the relation between performance and occupation.
The built environment requires energy-flexible buildings to reduce energy peak loads and to maximize the use of (decentralized) renewable energy sources. The challenge is to arrive at smart control strategies that respond to the increasing variations in both the energy demand as well as the variable energy supply. This enables grid integration in existing energy networks with limited capacity and maximises use of decentralized sustainable generation. Buildings can play a key role in the optimization of the grid capacity by applying demand-side management control. To adjust the grid energy demand profile of a building without compromising the user requirements, the building should acquire some energy flexibility capacity. The main ambition of the Brains for Buildings Work Package 2 is to develop smart control strategies that use the operational flexibility of non-residential buildings to minimize energy costs, reduce emissions and avoid spikes in power network load, without compromising comfort levels. To realise this ambition the following key components will be developed within the B4B WP2: (A) Development of open-source HVAC and electric services models, (B) development of energy demand prediction models and (C) development of flexibility management control models. This report describes the developed first two key components, (A) and (B). This report presents different prediction models covering various building components. The models are from three different types: white box models, grey-box models, and black-box models. Each model developed is presented in a different chapter. The chapters start with the goal of the prediction model, followed by the description of the model and the results obtained when applied to a case study. The models developed are two approaches based on white box models (1) White box models based on Modelica libraries for energy prediction of a building and its components and (2) Hybrid predictive digital twin based on white box building models to predict the dynamic energy response of the building and its components. (3) Using CO₂ monitoring data to derive either ventilation flow rate or occupancy. (4) Prediction of the heating demand of a building. (5) Feedforward neural network model to predict the building energy usage and its uncertainty. (6) Prediction of PV solar production. The first model aims to predict the energy use and energy production pattern of different building configurations with open-source software, OpenModelica, and open-source libraries, IBPSA libraries. The white-box model simulation results are used to produce design and control advice for increasing the building energy flexibility. The use of the libraries for making a model has first been tested in a simple residential unit, and now is being tested in a non-residential unit, the Haagse Hogeschool building. The lessons learned show that it is possible to model a building by making use of a combination of libraries, however the development of the model is very time consuming. The test also highlighted the need for defining standard scenarios to test the energy flexibility and the need for a practical visualization if the simulation results are to be used to give advice about potential increase of the energy flexibility. The goal of the hybrid model, which is based on a white based model for the building and systems and a data driven model for user behaviour, is to predict the energy demand and energy supply of a building. The model's application focuses on the use case of the TNO building at Stieltjesweg in Delft during a summer period, with a specific emphasis on cooling demand. Preliminary analysis shows that the monitoring results of the building behaviour is in line with the simulation results. Currently, development is in progress to improve the model predictions by including the solar shading from surrounding buildings, models of automatic shading devices, and model calibration including the energy use of the chiller. The goal of the third model is to derive recent and current ventilation flow rate over time based on monitoring data on CO₂ concentration and occupancy, as well as deriving recent and current occupancy over time, based on monitoring data on CO₂ concentration and ventilation flow rate. The grey-box model used is based on the GEKKO python tool. The model was tested with the data of 6 Windesheim University of Applied Sciences office rooms. The model had low precision deriving the ventilation flow rate, especially at low CO2 concentration rates. The model had a good precision deriving occupancy from CO₂ concentration and ventilation flow rate. Further research is needed to determine if these findings apply in different situations, such as meeting spaces and classrooms. The goal of the fourth chapter is to compare the working of a simplified white box model and black-box model to predict the heating energy use of a building. The aim is to integrate these prediction models in the energy management system of SME buildings. The two models have been tested with data from a residential unit since at the time of the analysis the data of a SME building was not available. The prediction models developed have a low accuracy and in their current form cannot be integrated in an energy management system. In general, black-box model prediction obtained a higher accuracy than the white box model. The goal of the fifth model is to predict the energy use in a building using a black-box model and measure the uncertainty in the prediction. The black-box model is based on a feed-forward neural network. The model has been tested with the data of two buildings: educational and commercial buildings. The strength of the model is in the ensemble prediction and the realization that uncertainty is intrinsically present in the data as an absolute deviation. Using a rolling window technique, the model can predict energy use and uncertainty, incorporating possible building-use changes. The testing in two different cases demonstrates the applicability of the model for different types of buildings. The goal of the sixth and last model developed is to predict the energy production of PV panels in a building with the use of a black-box model. The choice for developing the model of the PV panels is based on the analysis of the main contributors of the peak energy demand and peak energy delivery in the case of the DWA office building. On a fault free test set, the model meets the requirements for a calibrated model according to the FEMP and ASHRAE criteria for the error metrics. According to the IPMVP criteria the model should be improved further. The results of the performance metrics agree in range with values as found in literature. For accurate peak prediction a year of training data is recommended in the given approach without lagged variables. This report presents the results and lessons learned from implementing white-box, grey-box and black-box models to predict energy use and energy production of buildings or of variables directly related to them. Each of the models has its advantages and disadvantages. Further research in this line is needed to develop the potential of this approach.
The authors consider the reality that endless economic growth on a finite planet is unsustainable, especially if society has exceeded ecological limits. The paper examines various aspects of society's endless growth predicament. It reviews the idea that there are 'limits to growth'; it then considers the 'endless growth mantra' within society. The paper then considers the 'decoupling' strategy and its merits, and argues that it is, at best, a partial solution to the problem. The key social problem of denial of our predicament is considered, along with the contribution of anthropocentric modernism as a worldview that aids and abets that denial. Finally, the paper outlines some potential solutions to our growth predicament. https://www.ecologicalcitizen.net/article.php?t=insanity-endless-growth https://www.linkedin.com/in/helenkopnina/
MULTIFILE
The transition towards an economy of wellbeing is complex, systemic, dynamic and uncertain. Individuals and organizations struggle to connect with and embrace their changing context. They need to create a mindset for the emergence of a culture of economic well-being. This requires a paradigm shift in the way reality is constructed. This emergence begins with the mindset of each individual, starting bottom-up. A mindset of economic well-being is built using agency, freedom, and responsibility to understand personal values, the multi-identity self, the mental models, and the individual context. A culture is created by waving individual mindsets together and allowing shared values, and new stories for their joint context to emerge. It is from this place of connection with the self and the other, that individuals' intrinsic motivation to act is found to engage in the transitions towards an economy of well-being. This project explores this theoretical framework further. Businesses play a key role in the transition toward an economy of well-being; they are instrumental in generating multiple types of value and redefining growth. They are key in the creation of the resilient world needed to respond to the complex and uncertain of our era. Varta-Valorisatielab, De-Kleine-Aarde, and Het Groene Brein are frontrunner organizations that understand their impact and influence. They are making bold strategic choices to lead their organizations towards an economy of well-being. Unfortunately, they often experience resistance from stakeholders. To address this resistance, the consortium in the proposal seeks to answer the research question: How can individuals who connect with their multi-identity-self, (via personal values, mental models, and personal context) develop a mindset of well-being that enables them to better connect with their stakeholders (the other) and together address the transitional needs of their collective context for the emergence of a culture of the economy of wellbeing?
Every year in the Netherlands around 10.000 people are diagnosed with non-small cell lung cancer, commonly at advanced stages. In 1 to 2% of patients, a chromosomal translocation of the ROS1 gene drives oncogenesis. Since a few years, ROS1+ cancer can be treated effectively by targeted therapy with the tyrosine kinase inhibitor (TKI) crizotinib, which binds to the ROS1 protein, impairs the kinase activity and thereby inhibits tumor growth. Despite the successful treatment with crizotinib, most patients eventually show disease progression due to development of resistance. The available TKI-drugs for ROS1+ lung cancer make it possible to sequentially change medication as the disease progresses, but this is largely a ‘trial and error’ approach. Patients and their doctors ask for better prediction which TKI will work best after resistance occurs. The ROS1 patient foundation ‘Stichting Merels Wereld’ raises awareness and brings researchers together to close the knowledge gap on ROS1-driven oncogenesis and increase the options for treatment. As ROS1+ lung cancer is rare, research into resistance mechanisms and the availability of cell line models are limited. Medical Life Sciences & Diagnostics can help to improve treatment by developing new models which mimic the situation in resistant tumor cells. In the current proposal we will develop novel TKI-resistant cell lines that allow screening for improved personalized treatment with TKIs. Knowledge of specific mutations occurring after resistance will help to predict more accurately what the next step in patient treatment could be. This project is part of a long-term collaboration between the ROS1 patient foundation ‘Stichting Merels Wereld’, the departments of Pulmonary Oncology and Pathology of the UMCG and the Institute for Life Science & Technology of the Hanzehogeschool. The company Vivomicx will join our consortium, adding expertise on drug screening in complex cell systems.
In the last decade, the concept on interactions between humans, animals and their environment has drastically changed, endorsed by the One Health approach that recognizes that health of humans and animals are inextricably linked. Consideration of welfare of livestock has increased accordingly and with it, attention into the possibilities to improve livestock health via natural, more balanced nutrition is expanding. Central to effects of healthy nutrition is an optimal gastrointestinal condition which entails a well-balanced functional local immune system leading to a resilient state of well-being. This project proposal, GITools, aims to establish a toolbox of in vitro assays to screen new feed ingredients for beneficial effects on gastrointestinal health and animal well-being. GITools will focus on pig and chicken as important livestock species present in high quantities and living in close proximity to humans. GITools builds on intestinal models (intestinal cell lines and stem cell-derived organoids), biomarker analysis, and in vitro enzymatic and microbial digestion models of feed constituents. The concept of GITools originated from various individual contacts and projects with industry partners that produce animal feed (additives) or veterinary medicines. Within these companies, an urgent need exists for straightforward, well-characterized and standardized in vitro methods that provide results translatable to the in vivo situation. This to replace testing of new feed concepts in live animal. We will examine in vitro methods for their applicability with feed ingredients selected based on the availability of data from (previous) in vivo studies. These model compounds will include long and short chain fatty acids, oligosaccharides and herbal-derived components. GITools will deliver insights on the role of intestinal processes (e.g. dietary hormone production, growth of epithelial cells, barrier function and innate immune responses) in health and well-being of livestock animals and improve the efficiency of testing new feed products.