Dienst van SURF
© 2025 SURF
Greater New Orleans is surrounded by wetlands, the Mississippi River and two lakes. Excess rain can only be drained off with pumping systems or by evaporation due to the bowl-like shape of a large part of the city. As part of the solution to make New Orleans climate adaptive, green infrastructure has been implemented that enable rainfall infiltration and evapotranspiration of stored water after Hurricane Katrina in 2005. The long-term efficiency of infiltrating water under sea level with low permeable soils and high groundwater tables is often questioned. Therefore, research was conducted with the full-scale testing method measuring the infiltration capacity of 15 raingardens and 6 permeable pavements installed in the period 2011–2022. The results show a high variation of empty times for raingardens and swales: 0.7 to 54 m/d. The infiltration capacity decreased after saturation (ca 30% decrease in empty time after refilling storage volume) but all the tested green infrastructure met the guideline to be drained within 48 h. This is in contrast with the permeable pavement: only two of the six tested locations had an infiltration capacity higher than the guideline 10 inch/h (254 mm/h). The results are discussed with multiple stakeholders that participated in ClimateCafe New Orleans. Whether the results are considered unacceptable depends on a number of factors, including its intended purpose, site specific characteristics and most of all stakeholder expectations and perceptions. The designing, planning and scheduling of maintenance requirements for green infrastructure by stormwater managers can be carried out with more confidence so that green infrastructure will continue to perform satisfactorily over the intended design life and can mitigate the effects of heavy rainfall and droughts in the future.
Communities worldwide are critically re-examining their seasonal cultures and calendars. As cultural frameworks, seasons have long patterned community life and provided repertoires for living by annual rhythms. In a chaotic world, the seasons - winter, the monsoon and so on - can feel like stable cultural landmarks for reckoning time and orienting our communities. Seasons are rooted in our pasts and reproduced in our present. They act as schemes for synchronising community activities and professional practices, and as symbol systems for interpreting what happens in the world. But on closer inspection, seasons can be unstable and unreliable. Their meanings can change over time. Seasonal cultures evolve with environments and communities’ worldviews, values, technologies and practices, affecting how people perceive seasonal patterns and behave accordingly. Calendars are contested, especially now. Communities today find themselves in a moment of accelerated and intersecting changes - from climate to social, political, and technological - that are destabilizing seasonal cultures. How they reorient themselves to shifting patterns may affect whether seasonal rhythms serve as resources, or lead people down maladaptive pathways. A focus on seasonal cultures builds on multi-disciplinary work. The social sciences, from anthropology to sociology, have long studied how seasons order people’s sense of time, social life, relationship to the environment, and politics. In the humanities, seasons play an important role in literature, art, archaeology and history. This book advances scholarship in these fields, and enriches it with extrascientific insights from practice, to open up exiting new directions in climate adaptation. Critically questions traditional, often-static notions of seasons; re-interpreting them as more flexible, cultural frameworks adapting to changes to our societies and environments.
LINK
The development of the World Wide Web, the emergence of social media and Big Data have led to a rising amount of data. Infor¬mation and Communication Technol¬ogies (ICTs) affect the environment in various ways. Their energy consumption is growing exponentially, with and without the use of ‘green’ energy. Increasing envi¬ronmental aware¬ness has led to discussions on sustainable development. The data deluge makes it not only necessary to pay attention to the hard‑ and software di¬mensions of ICTs but also to the ‘value’ of the data stored. In this paper, we study the possibility to methodically reduce the amount of stored data and records in organizations based on the ‘value’ of informa¬tion, using the Green Archiving Model we have developed. Reducing the amount of data and records in organizations helps in allowing organizations to fight the data deluge and to realize the objectives of both Digital Archiving and Green IT. At the same time, methodi¬cally deleting data and records should reduce the con¬sumption of electricity for data storage. As a consequencs, the organizational cost for electricity use should be reduced. Our research showed that the model can be used to reduce [1] the amount of data (45 percent, using Archival Retention Levels and Retention Schedules) and [2] the electricity con¬sumption for data storage (resulting in a cost reduction of 35 percent). Our research indicates that the Green Ar¬chiving Model is a viable model to reduce the amount of stored data and records and to curb electricity use for storage in organi¬zations. This paper is the result of the first stage of a research project that is aimed at devel¬oping low power ICTs that will automa¬tically appraise, select, preserve or permanently delete data based on their ‘value’. Such an ICT will automatically reduce storage capacity and reduce electricity con¬sumption used for data storage. At the same time, data dispos¬al will reduce overload caused by storing the sa¬me data in different for¬mats, it will lower costs and it reduces the po¬tential for liability.
Logistics represents around 10-11% of global CO2 emissions, around 75% of which come from road freight transport. ‘The European Green Deal’ is calling for drastic CO2 reduction in this sector. This requires advanced and very expensive technological innovations; i.e. re-design of vehicle units, hybridization of powertrains and automatic vehicle technology. Another promising way to reach these environmental ambitions, without excessive technological investments, is the deployment of SUPER ECO COMBI’s (SEC). SEC is the umbrella name for multiple permutations of 32 meter, 70 tons, road-train combinations that can carry the payload-equivalent of 2 normal tractor-semitrailer combinations and even 3 rigid trucks. To fully deploy a SEC into the transport system the compliance with the existing infrastructure network and safety needs to be guaranteed; i.e. to deploy a specific SEC we should be able to determine which SEC-permutation is most optimal on specific routes with respect to regulations (a.o. damage to the pavement/bridges), the dimensions of specific infrastructures (roundabouts, slopes) and safety. The complexity of a SEC compared to a regular truck (double articulation, length) means that traditional optimisation methods are not applicable. The aim of this project is therefore to develop a first methodology enabling the deployment of the optimal SEC permutation. This will help transport companies (KIEM: Ewals) and trailer manufactures (KIEM: Emons) to invest in the most suitable designs for future SEC use. Additionally the methodology will help governments to be able to admit specific SEC’s to specific routes. The knowledge gained in this project will be combined with the knowledge of the broader project ENVELOPE (NWA-IDG). This will be the start of broader research into an overall methodology of deploying optimal vehicle combinations and a new regulatory framework. The knowledge will be used in master courses on vehicle dynamics.
Climate change is increasing the challenges for water management worldwide. Extreme weather conditions, such as droughts and heavy rainfall, are increasingly limiting the availability of water, especially for agriculture. Nature-Based Solutions (NBS) offer potential solutions. They help to collect and infiltrate rainwater and thus play an important role in climate adaptation.Green infrastructure, such as rain gardens (sunken plant beds) and wadis (sunken grass fields for temporary storage of rainwater), help to restore the urban water balance. They reduce rainwater runoff, stabilize groundwater levels and solve problems with soil moisture and temperature. Despite these advantages, there is still much ignorance in practice about the possibilities of NBS. To remedy this, freely accessible knowledge modules are being developed that can help governments and future employees to better understand the application of these solutions. This research, called GINA (Green Infrastructure in Urban Areas), aims to create more sustainable and climate-resilient cities by developing and sharing knowledge about NBS, and supports local governments and students in effectively deploying these green infrastructures.
Intelligent technology in automotive has a disrupting impact on the way modern automobiles are being developed. New technology not only has brought complexity to already existing information in the car (digitization of driver instruments) but also brings new external information to the driver on how to optimize the driving style amongst others from the perspective of communicating with infrastructures (Vehicle to Infrastructure communication (V2I)). The amount of information that a driver has to process in modern vehicles is increasing rapidly due to the introduction of multiple displays and new external information sources. An information overload lies awaiting, yet current Human Machine Interface (HMI) designs and the corresponding legal frameworks lag behind. Currently, many initiatives (Pratijkproef Amsterdam, Concorda) are being developed with respect to V2I, amongst others with Rijkswaterstaat, North Holland and Brabant. In these initiatives, SME’s, like V-Tron, focus on the development of specific V2I hardware. Yet in the field of HMI’s these SME’s need universities (HAN University of Applied Science, Rhine Waal University of Applied Science) and industrial designers (Yellow Chess) to help them with design guidelines and concept HMI’s. We propose to develop first guidelines on possible new human-machine interfaces. Additionally, we will show the advantages of HMI’s that go further than current legal requirements. Therefore, this research will focus on design guidelines averting the information overload. We show two HMI’s that combine regular driver information with V2I information of a Green Light Optimized Speed Advise (GLOSA) use case. The HMI’s will be evaluated on a high level (focus groups and a small simulator study). The KIEM results in two publications. In a plenary meeting with experts, the guidelines and the limitations of current legal requirements will be discussed. The KIEM will lead to a new consortium to extend the research.