Dienst van SURF
© 2025 SURF
In this paper, the performance gain obtained by combining parallel peri- odic real-time processes is elaborated. In certain single-core mono-processor configurations, for example, embedded control systems in robotics comprising many short processes, process context switches may consume a considerable amount of the available processing power. For this reason, it can be advantageous to combine processes, to reduce the number of context switches and thereby increase the performance of the application. As we consider robotic applications only, often consisting of processes with identical periods, release times and deadlines, we restrict these configurations to periodic real-time processes executing on a single-core mono-processor. By graph-theoretical concepts and means, we provide necessary and sufficient conditions so that the number of context switches can be reduced by combining synchronising processes.
In bepaalde single-core configuraties met één processor, b.v. embedded control systems zoals robotic applications die uit vele korte processen bestaan, kunnen de context switches van een proces een aanzienlijke hoeveelheid van de beschikbare processing power verbruiken. Het verminderen van het aantal context switches vermindert de executietijd en verhoogt daardoor de prestaties van de toepassing. Bovendien is de end-to-end executietijd van de processen langer dan strict noodzakelijk, b.v. omdat de processen moeten wachten op controllers die een taak uitvoeren. Door de regels voor synchrone communicatie via kanalen in de procesalgebraïsche specificatietaal Communicating Sequential Processes te versoepelen, kunnen we de end-to-end executietijd verkorten. In ons onderzoek definiëren we verschillende graafproducten, bewijzen we dat deze producten een prestatiewinst opleveren (onder bepaalde voorwaarden) en we werken de numerieke en combinatorische aspecten van deze graafproducten uit.
A level designer typically creates the levels of a game to cater for a certain set of objectives, or mission. But in procedural content generation, it is common to treat the creation of missions and the generation of levels as two separate concerns. This often leads to generic levels that allow for various missions. However, this also creates a generic impression for the player, because the potential for synergy between the objectives and the level is not utilised. Following up on the mission-space generation concept, as described by Dormans, we explore the possibilities of procedurally generating a level from a designer-made mission. We use a generative grammar to transform a mission into a level in a mixed-initiative design setting. We provide two case studies, dungeon levels for a rogue-like game, and platformer levels for a metroidvania game. The generators differ in the way they use the mission to generate the space, but are created with the same tool for content generation based on model transformations. We discuss the differences between the two generation processes and compare it with a parameterized approach.
LINK
The scientific publishing industry is rapidly transitioning towards information analytics. This shift is disproportionately benefiting large companies. These can afford to deploy digital technologies like knowledge graphs that can index their contents and create advanced search engines. Small and medium publishing enterprises, instead, often lack the resources to fully embrace such digital transformations. This divide is acutely felt in the arts, humanities and social sciences. Scholars from these disciplines are largely unable to benefit from modern scientific search engines, because their publishing ecosystem is made of many specialized businesses which cannot, individually, develop comparable services. We propose to start bridging this gap by democratizing access to knowledge graphs – the technology underpinning modern scientific search engines – for small and medium publishers in the arts, humanities and social sciences. Their contents, largely made of books, already contain rich, structured information – such as references and indexes – which can be automatically mined and interlinked. We plan to develop a framework for extracting structured information and create knowledge graphs from it. We will as much as possible consolidate existing proven technologies into a single codebase, instead of reinventing the wheel. Our consortium is a collaboration of researchers in scientific information mining, Odoma, an AI consulting company, and the publisher Brill, sharing its data and expertise. Brill will be able to immediately put to use the project results to improve its internal processes and services. Furthermore, our results will be published in open source with a commercial-friendly license, in order to foster the adoption and future development of the framework by other publishers. Ultimately, our proposal is an example of industry innovation where, instead of scaling-up, we scale wide by creating a common resource which many small players can then use and expand upon.