Dienst van SURF
© 2025 SURF
Grammar-based procedural level generation raises the productivity of level designers for games such as dungeon crawl and platform games. However, the improved productivity comes at cost of level quality assurance. Authoring, improving and maintaining grammars is difficult because it is hard to predict how each grammar rule impacts the overall level quality, and tool support is lacking. We propose a novel metric called Metric of Added Detail (MAD) that indicates if a rule adds or removes detail with respect to its phase in the transformation pipeline, and Specification Analysis Reporting (SAnR) for expressing level properties and analyzing how qualities evolve in level generation histories. We demonstrate MAD and SAnR using a prototype of a level generator called Ludoscope Lite. Our preliminary results show that problematic rules tend to break SAnR properties and that MAD intuitively raises flags. MAD and SAnR augment existing approaches, and can ultimately help designers make better levels and level generators.
ConceptThe goal of the worksop/tutorial is to introduce participants to the fundamentals of Procedural Content Generation (PCG) based on generative grammars, have them experience an example of such a system first-hand, and discuss the potential of this approach for various areas of procedural content generation for games. The principles and examples are based on Ludoscope, a software tool developed at the HvA by Dr. Joris Dormans, e.a.Duration: 2 hoursOverviewWe will use the first 30 minutes to explain the basics of how to use generative grammars to generate levels. The principles of these grammars and model transformations will be demonstrated by means of the level generation system of Spelunky, which we have modeled in Ludoscope.Spelunky focuses solely on the generation of geometry, but grammar-based systems can also be used to transform more abstract concepts of level design into level geometry. In the next hour, the participants will be able to get some hands-on experience with Ludoscope. The assignment will be to generate a Mario-like level based on specific requirements, adapted to the interests of workshop participants.Finally, we are interested in the participants’ evaluation of this approach to PCG. We will use the last 20 minutes to discuss alternative techniques, and possible applications to other areas of PCG, like asset creation, scripting and game generation.Workshop participants are asked to bring a (PC) laptop to work on during the workshop, and are encouraged to work in pairs.
LINK
This paper investigates strategies to generate levels for action-adventure games. For this genre, level design is more critical than for rule-driven genres such as simulation or rogue-like role-playing games, for which procedural level generation has been successful in the past. The approach outlined by this article distinguishes between missions and spaces as two separate structures that need to be generated in two individual steps. It discusses the merits of different types of generative grammars for each individual step in the process. Notably, the approach acknowledges that the online generation of levels needs to be tailored strictly to the actual experience of a player. Therefore, the approach incorporates techniques to establish and exploit player models in actual play.