Dienst van SURF
© 2025 SURF
Natural gas extraction from the Groningen gas fields in the Netherlands used to be a non-controversial activity, but became highly contested over the past few years. In addition to a political mandate to commercially operate the Groningen gas fields, NAM needs approval from local residents and society at large. In this study, we analyse how NAM attempted to maintain its social license
GasTerra is, als exclusieve verkoper van het gas uit de Groningse bodem, een cruciale ketenpartner in de energiesector in Nederland. Om deze strategische positie goed te kunnen vormgeven wil GasTerra de beeldvorming in de Nederlandse samenleving over gas en GasTerra analyseren. Men wil inzicht in of en hoe de rol van gas in de Nederlandse samenleving besproken wordt. GasTerra vraagt daartoe naar een verdiepende analyse van de vorming van de publieke opinie rondom de positie en het imago van gas en GasTerra in het bijzonder. Het lectoraat Communication & Sustainable Society van de Hanzehogeschool Groningen heeft opdracht gekregen onderzoek te verrichten. Een verdiepende discoursanalyse naar de kracht en werking van frames moet inzicht geven en richting geven aan de tone of voice die GasTerra hanteert in haar communicatiestrategie. Ook is er een Rapid Evidence Assessment uitgevoerd om inzicht te verkrijgen in de meest actuele wetenschappelijke stand van zaken rond het gasdebat en opvattingen daaromtrent.
For centuries, natural gas has been one of humanity’s main energy sources. The gas sector is still heavily reliant on natural gas production; however, as natural gas fields contain only a finite quantity of gas, its continued extraction is leading to the resource’s depletion. Furthermore, natural gas production has become a subject of debate, with many considering continued utilisation incompatible with the achievement of international and European climate goals. The need for alternative gases that are less damaging to the environment is becoming increasingly evident. Biomethane has shown itself to be a reliable alternative to natural gas, and if sourced and manufactured responsibly results in no new CO2 emissions. Another alternative, hydrogen, can, through the process of methanisation, be converted into synthetic natural gas (SNG). This chapter discusses the legal aspects of the production and use of biomethane, hydrogen and SNG.
LINK
The SMEs participating in the NUTSHELL-project approached Avans to assist them in evaluating the pyrolytic extraction of valuable oils from Cashew Nut Shell (CNS). CNS is waste generated in the production of edible cashew nut. For the 2017 the predicted cashew nuts crop yield is 3 million tons; resulting to 2 million tons of CNS waste. CNS contains circa 30-35% brown viscous liquid, called Cashew Nut Shell Liquid (CNSL) , this is a natural resin containing valuable components, for example cardanol, cardol and anacardic acid. CNSL and its derivatives have several industrial uses as biobased additives, polymeric building blocks and biodiesel. Part of the CNSL can be extracted during the roasting process prior to separating the shell and nut kernel. The shell waste still has a relatively high CNSL concentration that can be isolated by solvents or pressing (expeller). Expeller process is simple and not capital-intensive; therefore it is commonly used in a small scale production. The main disadvantages of the method are the relatively high energy consumption and its low oil recovery, the level of oil in the press-cake remains 3 to 5%. The residual oil produces harmful gases in burning hence hindering the use as fuel. Also the resulting cake is too dense to be further processed to charcoal or other useful application; hence forming a significant waste stream. One of the main advantages of the pyrolysis route as envisaged by the SME partners is using the total CNS biomass. The objective of this project is to study a process where in the pyrolytic isolation of CNSL oils is achieved and the remaining cake can be further pyrolysed to form charcoal or biochar.
Aerogel fibers consist of up to 99.9% of air which leads to outstanding insulation proper-ties for e.g. house construction. The simple use of aerogel fibers as wallpaper could lead to 25% energy savings. According to calculations of Advanced Manufacturing Office, energy savings of 1% saves 7500 million gallons of gasoline every year in the USA which equals, depending on the oil price, more than 18 billon USD. In this KIEM project, the cellulose purity needed to be able to spin cellulose into a fila-ment for aerogel production will be determined. Cellulose is the most abundant polymer on the planet. In principle, cellulose-based aerogels could replace petroleum-based and partly toxic polystyrene which is currently used for insulation purposes and which leads to toxic waste. The cellulosic starting material is generated via the “Beta process” as developed by a company called DSD. The “Beta process” offers an efficient way of generating ethanol from sugar beets. The by-product of that process contains cellulose, pectines and hemi-cellulose. To be able to use this mixture for wet spinning, this mixture needs to be puri-fied. Researchers and students from Zuyd University of Applied Sciences will, in collabora-tion with DSD, pursue the purification of the waste stream material in the labs of the Centre of Expertise CHILL. Next, the obtained cellulose grades will be processed as spinning dope in a wet spinning process on lab scale with up to 60 ml per batch at AMI-BM. The results will be used as feedback for the purification process. Several possible partners such as DSD, ACRRES (Application Center for Renewable Resources), Technoforce (extraction), Greenfields (fermentation) and VAM (washing in-stallations) show high interest for the up-scaling of the process and for the validation and implementation in the built environment, showing the feasibility a follow-up project.
Induced seismicity problems in the Groningen area caused by gas extraction have been one of the major challenges for the engineering and construction companies in the region and the Netherlands, not only because earthquake phenomena are new to the Dutch engineering community but also because the problem is very much complicated due to its social extents. The companies working in the structural engineering field in the region in different disciplines were forced to adapt very quickly to the earthquake related problems. It was a real size and investment problem for the SMEs, several of which benefited from this rush, however, only under certain conditions can this new skill set be sustainable. The SafeGo project aims mostly to help to facilitate sustainable development and build confidence for the SMEs in the field of earthquake engineering, rather than producing new scientific knowledge for them. SMEs are positioned in the seismic strengthening process either for collection of data or for providing and applying strengthening solutions. The proposed project aims to answer the question on how the “data-collection SMEs” can translate their data into more valuable assets to be used in the earthquake problem because the collection and the use of field data are vital. Furthermore, the question is also how the “strengthening SMEs” can verify and demonstrate their systems on a seismic shake table, because strengthening requires proven methodologies. The project goal is to combine these two central questions into findings on how the experimental and field data can efficiently be translated into suitable procedures, products and computer simulations for seismic assessment and strengthening of buildings, allowing SMEs to provide novel, integrated and accurate solutions not only in the region but also in international markets.