Dienst van SURF
© 2025 SURF
Aims and objectives. The Forensic Early Warning Signs of Aggression Inventory (FESAI) was developed to assist nurses and patients in identifying early warning signs and constructing individual early detection plans (EDP) for the prevention of aggressive incidents. The aims of this research were as follows: First, to study the prevalence of early warning signs of aggression, measured with the FESAI, in a sample of forensic patients, and second, to explore whether there are any types of warning signs typical of diagnostic subgroups or offender subgroups. Background. Reconstructing patients’ changes in behaviour prior to aggressive incidents may contribute to identify early warning signs specific to the individual patient. The EDP comprises an early intervention strategy suggested by the patient and approved by the nurses. Implementation of EDP may enhance efficient risk assessment and management. Design. An explorative design was used to review existing records and to monitor frequencies of early warning signs. Methods. Early detection plans of 171 patients from two forensic hospital wards were examined. Frequency distributions were estimated by recording the early warning signs on the FESAI. Rank order correlation analyses were conducted to compare diagnostic subgroups and offender subgroups concerning types and frequencies of warning signs. Results. The FESAI categories with the highest frequency rank were the following: (1) anger, (2) social withdrawal, (3) superficial contact and (4) non-aggressive antisocial behaviour. There were no significant differences between subgroups of patients concerning the ranks of the four categories of early warning signs. Conclusion. The results suggest that the FESAI covers very well the wide variety of occurred warning signs reported in the EDPs. No group profiles of warning signs were found to be specific to diagnosis or offence type. Relevance to clinical practice. Applying the FESAI to develop individual EDPs appears to be a promising approach to enhance risk assessment and management.
The study of human factors in forensic science informs our understanding of the interaction between humans and the systems they use. The Expert Working Group (EWG) on Human Factors in Forensic DNA Interpretation used a systems approach to conduct a scientific assessment of the effects of human factors on forensic DNA interpretation with the goal of recommending approaches to improve practice and reduce the likelihood and consequence of errors. This effort resulted in 44 recommendations. The EWG designed many of these recommendations to improve the production, interpretation, evaluation, documentation, and communication of DNA comparison results.
MULTIFILE
Are professionals better at assessing the evidential strength of different types of forensic conclusions compared to students? In an online questionnaire 96 crime investigation and law students, and 269 crime investigation and legal professionals assessed three fingerprint examination reports. All reports were similar, except for the conclusion part which was stated in a categorical (CAT), verbal likelihood ratio (VLR) or numerical likelihood ratio (NLR) conclusion with high or low evidential strength. The results showed no significant difference between the groups of students and professionals in their assessment of the conclusions. They all overestimated the strength of the strong CAT conclusion compared to the other conclusion types and underestimated the strength of the weak CAT conclusion. Their background (legal vs. crime investigation) did have a significant effect on their understanding. Whereas the legal professionals performed better compared to the crime investigators, the legal students performed worse compared to crime investigation students.
Every year the police are confronted with an ever increasing number of complex cases involving missing persons. About 100 people are reported missing every year in the Netherlands, of which, an unknown number become victims of crime, and presumed buried in clandestine graves. Similarly, according to NWVA, several dead animals are also often buried illegally in clandestine graves in farm lands, which may result in the spread of diseases that have significant consequences to other animals and humans in general. Forensic investigators from both the national police (NP) and NWVA are often confronted with a dilemma: speed versus carefulness and precision. However, the current forensic investigation process of identifying and localizing clandestine graves are often labor intensive, time consuming and employ classical techniques, such as walking sticks and dogs (Police), which are not effective. Therefore, there is an urgent request from the forensic investigators to develop a new method to detect and localize clandestine graves quickly, efficiently and effectively. In this project, together with practitioners, knowledge institutes, SMEs and Field labs, practical research will be carried out to devise a new forensic investigation process to identify clandestine graves using an autonomous Crime Scene Investigative (CSI) drone. The new work process will exploit the newly adopted EU-wide drone regulation that relaxes a number of previously imposed flight restrictions. Moreover, it will effectively optimize the available drone and perception technologies in order to achieve the desired functionality, performance and operational safety in detecting/localizing clandestine graves autonomously. The proposed method will be demonstrated and validated in practical operational environments. This project will also make a demonstrable contribution to the renewal of higher professional education. The police and NVWA will be equipped with operating procedures, legislative knowledge, skills and technological expertise needed to effectively and efficiently performed their forensic investigations.
In het forensisch werkveld staan drie vragen centraal. Het gaat dan om “wie is het”, “wat is er gebeurd” en “wanneer is het gebeurd”. Alle informatie die bijdraagt aan het beantwoorden van deze vragen is waardevol in zaakonderzoeken. Vaak wordt er wel een biologisch spoor gevonden, maar is er geen “match” met de databank. In dit geval kan profileringsinformatie helpen bij het zoeken naar de juiste persoon. Met profilering wordt hier bedoeld een serie stoffen, ook markers genoemd, die informatie geven over de levensstijl van mensen. De levensstijl kan bestaan uit kenmerken, voeding, gewoonten en activiteiten. Een recent voorbeeld van een profileringsmethode is het analyseren van de buitenzijde van mobiele telefoons. Door het hanteren van de telefoon laten mensen zweet en stoffen achter die gekarakteriseerd kunnen worden. Het profiel van deze stoffen geeft een beschrijving van de levensstijl van de eigenaar. In veel zaken zijn er echter geen mobiele telefoon aanwezig, maar wel andere sporen zoals haar. Daarom is er behoefte aan een methode om haar te gebruiken voor profilering. Bovendien geeft haar een indicatie van tijd en gebeurtenissen uit het verleden omdat het langzaam groeit. In principe kan er dan informatie over de drie vragen (wie, wat, wanneer) verzameld worden. Haren worden op dit moment vooral gebruikt voor het meten van drugs, alcohol gebruik, cortisol en nicotine. Er is echter behoefte aan een breder palet van stoffen dat in één keer in haar kan worden gemeten. Het doel van dit onderzoek is daarom het ontwikkelen van een methode waarmee in één analysegang een profiel van circa 15 uiteenlopende markers kan worden gemeten.