Dienst van SURF
© 2025 SURF
This study aims to identify kinematic differences between children with Ponseti treated clubfoot and age-mat- ched healthy controls during gait, using the Oxford Foot Model. This pilot is part of a large project comparing gait kinematics between children with Ponseti treated clubfoot with and without relapse and healthy controls. Final results could identify relevant gait parameters which will allow for early detection of a relapse clubfoot.
A clubfoot is characterized by a three-dimensional deformity with an equinus, varus, cavus and adduction component. Nowadays the Ponseti method is the preferred treatment for clubfeet, aiming to achieve a normal appearing, functional and painless foot. The reoccurrence of clubfoot components in treated clubfeet, a relapse, is a known problem in clubfoot patients. 3Dgait analysis can be used in assessment of foot function and residual deviations in gait or possible relapses. Gait analysis is frequently used to analyse differences in gait between clubfoot and healthy controls. However, the usage of multisegment foot models is, although of importance considering the characteristics of the clubfoot, rare. In order to capture the full multi-planar and multi-joint nature of a clubfoot, it is highly important to implement multi-segment foot models in gait analysis. In order to improve treatment of individual relapse clubfoot kinematics differences in clinical relevant functional outcomes should be known.
Background Understanding the kinematic characteristics of relapse clubfoot compared to successfully treated clubfoot could aid early identification of a relapse and improve treatment planning. The usage of a multi segment foot model is essential in order to grasp the full complexity of the multi-planar and multi-joint deformity of the clubfoot. Research question The purpose of this study was to identify differences in foot kinematics, using a multi-segment foot model, during gait between patients with Ponseti treated clubfoot with and without a relapse and age-matched healthy controls. Methods A cross-sectional study was carried out including 11 patients with relapse clubfoot, 11 patients with clubfoot and 15 controls. Gait analysis was performed using an extended Helen Hayes model combined with the Oxford Foot Model. Statistical analysis included statistical parametric mapping and discrete analysis of kinematic gait parameters of the pelvis, hip, knee, ankle, hindfoot and forefoot in the sagittal, frontal and transversal plane. Results The relapse group showed significantly increased forefoot adduction in relation with the hindfoot and the tibia. Furthermore, this group showed increased forefoot supination in relation with the tibia during stance, whereas during swing increased forefoot supination in relation with the hindfoot was found in patients with relapse clubfoot compared with non-relapse clubfoot. Significance Forefoot adduction and forefoot supination could be kinematic indicators of relapse clubfoot, which might be useful in early identification of a relapse clubfoot. Subsequently, this could aid the optimization of clinical decision making and treatment planning for children with clubfoot.
MULTIFILE