Dienst van SURF
© 2025 SURF
In the production of fermented foods, microbes play an important role. Optimization of fermentation processes or starter culture production traditionally was a trial-and-error approach inspired by expert knowledge of the fermentation process. Current developments in high-throughput 'omics' technologies allow developing more rational approaches to improve fermentation processes both from the food functionality as well as from the food safety perspective. Here, the authors thematically review typical bioinformatics techniques and approaches to improve various aspects of the microbial production of fermented food products and food safety.
The objective of this study was to generate groups of agri-food producers with high affinity in relation to their sustainable waste management practices. The aim of conforming these groups is the development of synergies, knowledge management, and policy- and decision-making by diverse stakeholders. A survey was conducted among the most experienced farmers in the region of Nuevo Urecho, Michoacán, Mexico, and a total of eight variables relating to sustainable waste management practices, agricultural food loss, and the waste generated at each stage of the production process were examined. The retrieved data were treated using the maximum inverse correspondence algorithm and the Galois Lattice was applied to generate clusters of highly affine producers. The results indicate 163 possible elements that generate the power set, and 31 maximum inverse correspondences were obtained. At this point, it is possible to determine the maximum number of relationships, called affinities. In general, all 15 considered farmers shared the measure of revaluation of food waste and 90% of the farmers shared affinity in measures related to ecological care and the proper management of waste. A practical implication of this study is the conformation of highly affine clusters for both policy and strategic decision-making.
LINK
BackgroundScientific software incorporates models that capture fundamental domain knowledge. This software is becoming increasingly more relevant as an instrument for food research. However, scientific software is currently hardly shared among and (re-)used by stakeholders in the food domain, which hampers effective dissemination of knowledge, i.e. knowledge transfer.Scope and approachThis paper reviews selected approaches, best practices, hurdles and limitations regarding knowledge transfer via software and the mathematical models embedded in it to provide points of reference for the food community.Key findings and conclusionsThe paper focusses on three aspects. Firstly, the publication of digital objects on the web, which offers valorisation software as a scientific asset. Secondly, building transferrable software as way to share knowledge through collaboration with experts and stakeholders. Thirdly, developing food engineers' modelling skills through the use of food models and software in education and training.