Dienst van SURF
© 2025 SURF
Research on follow-up outcomes of systemic interventions for family members with an intellectual disability is scarce. In this study, short-term and long-term follow-up outcomes of multisystemic therapy for adolescents with antisocial or delinquent behaviour and an intellectual disability (MST-ID) are reported. In addition, the role of parental intellectual disability was examined. Outcomes of 55 families who had received MST-ID were assessed at the end of treatment and at 6-month, 12-month and 18-month follow-up. Parental intellectual disability was used as a predictor of treatment outcomes. Missing data were handled using multiple imputation. Rule-breaking behaviour of adolescents declined during treatment and stabilized until 18 months post-treatment. The presence or absence of parental intellectual disability did not predict treatment outcomes. This study was the first to report long-term outcomes of MST-ID. The intervention achieved similar results in families with and without parents with an intellectual disability.
Purpose: Breast cancer follow-up (surveillance and aftercare) varies from one-size-fits-all to more personalised approaches. A systematic review was performed to get insight in existing evidence on (cost-)efectiveness of personalised follow-up. Methods: PubMed, Scopus and Cochrane were searched between 01–01-2010 and 10–10-2022 (review registered in PROSPERO:CRD42022375770). The inclusion population comprised nonmetastatic breast cancer patients≥18 years, after completing curative treatment. All intervention-control studies studying personalised surveillance and/or aftercare designed for use during the entire follow-up period were included. All review processes including risk of bias assessment were performed by two reviewers. Characteristics of included studies were described. Results: Overall, 3708 publications were identifed, 64 full-text publications were read and 16 were included for data extraction. One study evaluated personalised surveillance. Various personalised aftercare interventions and outcomes were studied. Most common elements included in personalised aftercare plans were treatment summaries (75%), follow-up guidelines (56%), lists of available supportive care resources (38%) and PROs (25%). Control conditions mostly comprised usual care. Four out of seven (57%) studies reported improvements in quality of life following personalisation. Six studies (38%) found no personalisation efect, for multiple outcomes assessed (e.g. distress, satisfaction). One (6.3%) study was judged as low, four (25%) as high risk of bias and 11 (68.8%) as with concerns. Conclusion: The included studies varied in interventions, measurement instruments and outcomes, making it impossible to draw conclusions on the efectiveness of personalised follow-up. There is a need for a definition of both personalised surveillance and aftercare, whereafter outcomes can be measured according to uniform standards.
Background: There are indications that older adults who suffer from poor balance have an increased risk for adverse health outcomes, such as falls and disability. Monitoring the development of balance over time enables early detection of balance decline, which can identify older adults who could benefit from interventions aimed at prevention of these adverse outcomes. An innovative and easy-to-use device that can be used by older adults for home-based monitoring of balance is a modified bathroom scale. Objective: The objective of this paper is to study the relationship between balance scores obtained with a modified bathroom scale and falls and disability in a sample of older adults. Methods: For this 6-month follow-up study, participants were recruited via physiotherapists working in a nursing home, geriatricians, exercise classes, and at an event about health for older adults. Inclusion criteria were being aged 65 years or older, being able to stand on a bathroom scale independently, and able to provide informed consent. A total of 41 nursing home patients and 139 community-dwelling older adults stepped onto the modified bathroom scale three consecutive times at baseline to measure their balance. Their mean balance scores on a scale from 0 to 16 were calculated—higher scores indicated better balance. Questionnaires were used to study falls and disability at baseline and after 6 months of follow-up. The cross-sectional relationship between balance and falls and disability at baseline was studied using t tests and Spearman rank correlations. Univariate and multivariate logistic regression analyses were conducted to study the relationship between balance measured at baseline and falls and disability development after 6 months of follow-up.
Horse riding falls under the “Sport for Life” disciplines, where a long-term equestrian development can provide a clear pathway of developmental stages to help individuals, inclusive of those with a disability, to pursue their goals in sport and physical activity, providing long-term health benefits. However, the biomechanical interaction between horse and (disabled) rider is not wholly understood, leaving challenges and opportunities for the horse riding sport. Therefore, the purpose of this KIEM project is to start an interdisciplinary collaboration between parties interested in integrating existing knowledge on horse and (disabled) rider interaction with any novel insights to be gained from analysing recently collected sensor data using the EquiMoves™ system. EquiMoves is based on the state-of-the-art inertial- and orientational-sensor system ProMove-mini from Inertia Technology B.V., a partner in this proposal. On the basis of analysing previously collected data, machine learning algorithms will be selected for implementation in existing or modified EquiMoves sensor hardware and software solutions. Target applications and follow-ups include: - Improving horse and (disabled) rider interaction for riders of all skill levels; - Objective evidence-based classification system for competitive grading of disabled riders in Para Dressage events; - Identifying biomechanical irregularities for detecting and/or preventing injuries of horses. Topic-wise, the project is connected to “Smart Technologies and Materials”, “High Tech Systems & Materials” and “Digital key technologies”. The core consortium of Saxion University of Applied Sciences, Rosmark Consultancy and Inertia Technology will receive feedback to project progress and outcomes from a panel of international experts (Utrecht University, Sport Horse Health Plan, University of Central Lancashire, Swedish University of Agricultural Sciences), combining a strong mix of expertise on horse and rider biomechanics, veterinary medicine, sensor hardware, data analysis and AI/machine learning algorithm development and implementation, all together presenting a solid collaborative base for derived RAAK-mkb, -publiek and/or -PRO follow-up projects.
Physical rehabilitation programs revolve around the repetitive execution of exercises since it has been proven to lead to better rehabilitation results. Although beginning the motor (re)learning process early is paramount to obtain good recovery outcomes, patients do not normally see/experience any short-term improvement, which has a toll on their motivation. Therefore, patients find it difficult to stay engaged in seemingly mundane exercises, not only in terms of adhering to the rehabilitation program, but also in terms of proper execution of the movements. One way in which this motivation problem has been tackled is to employ games in the rehabilitation process. These games are designed to reward patients for performing the exercises correctly or regularly. The rewards can take many forms, for instance providing an experience that is engaging (fun), one that is aesthetically pleasing (appealing visual and aural feedback), or one that employs gamification elements such as points, badges, or achievements. However, even though some of these serious game systems are designed together with physiotherapists and with the patients’ needs in mind, many of them end up not being used consistently during physical rehabilitation past the first few sessions (i.e. novelty effect). Thus, in this project, we aim to 1) Identify, by means of literature reviews, focus groups, and interviews with the involved stakeholders, why this is happening, 2) Develop a set of guidelines for the successful deployment of serious games for rehabilitation, and 3) Develop an initial implementation process and ideas for potential serious games. In a follow-up application, we intend to build on this knowledge and apply it in the design of a (set of) serious game for rehabilitation to be deployed at one of the partners centers and conduct a longitudinal evaluation to measure the success of the application of the deployment guidelines.
Lipids, proteins and biological active compounds that are present in insects can serve as nutrient source for poultry production. Because of the potential benefit effects of using insects as feed additives, we must consider the effects of gut microbiome on the insect affects itself, and the expected effect on the microbiome of the broilers that consume these insects. This is specifically important in the situation where live insects are fed to poultry, without prior processing. In this proposal we describe to study whether larvae fed to broilers will affect their microbiome in a positive way for practical applications in poultry industry. Hence, a pilot proof-of-concept study will be carried out as basis for a follow-up proposal for a larger project in the future, that we also like to set-up within this project. In that follow-up proposal, focus will be on the effect of different substrates for insects, on the insect microbiome, to spike insects with specific bacteria and to track their microbiome dynamics over time, and the effect of these insects used as a feed additive on the broiler gut microbiome. This study will provide results on if live Black Soldier Fly larvae (BSFL) can affect the broiler gut microbiome in a positive way, and relevant outcomes will be exploited in a follow-up research proposal in which these effects will be unraveled in detail for adoption by the industry. The project is a collaboration between cooperative insect company RavenFeed and NGN Pro-active both with knowledge on BSFL rearing, Wageningen Bioveterinary Research (WBVR) with knowledge on insect diseases and microbiome analysis, Schothorst Feed Research (SFR) highly experienced in poultry nutrition research and having unique poultry facilities, and Aeres University of Applied Sciences Dronten (AHD) with research facilities for BSFL rearing under experimental conditions.