Dienst van SURF
© 2025 SURF
Modifiable (biomechanical and neuromuscular) anterior cruciate ligament (ACL) injury risk factors have been identified in laboratory settings. These risk factors were subsequently used in ACL injury prevention measures. Due to the lack of ecological validity, the use of on-field data in the ACL injury risk screening is increasingly advocated. Though, the kinematic differences between laboratory and on-field settings have never been investigated. The aim of the present study was to investigate the lower-limb kinematics of female footballers during agility movements performed both in laboratory and football field environments. Twenty-eight healthy young female talented football (soccer) players (14.9 ± 0.9 years) participated. Lower-limb joint kinematics was collected through wearable inertial sensors (Xsens Link) in three conditions: (1) laboratory setting during unanticipated sidestep cutting at 40-50°; on the football pitch (2) football-specific exercises (F-EX) and (3) football games (F-GAME). A hierarchical two-level random effect model in Statistical Parametric Mapping was used to compare joint kinematics among the conditions. Waveform consistency was investigated through Pearson's correlation coefficient and standardized z-score vector. In-lab kinematics differed from the on-field ones, while the latter were similar in overall shape and peaks. Lower sagittal plane range of motion, greater ankle eversion, and pelvic rotation were found for on-field kinematics (p < 0.044). The largest differences were found during landing and weight acceptance. The biomechanical differences between lab and field settings suggest the application of context-related adaptations in female footballers and have implications in ACL injury prevention strategies. Highlights: Talented youth female football players showed kinematical differences between the lab condition and the on-field ones, thus adopting a context-related motor strategy. Lower sagittal plane range of motion, greater ankle eversion, and pelvic rotation were found on the field. Such differences pertain to the ACL injury mechanism and prevention strategies. Preventative training should support the adoption of non-linear motor learning to stimulate greater self-organization and adaptability. It is recommended to test football players in an ecological environment to improve subsequent primary ACL injury prevention programmes.
There are three volumes in this body of work. In volume one, we lay the foundation for a general theory of organizing. We propose that organizing is a continuous process of ongoing mutual or reciprocal influence between objects (e.g., human actors) in a field, whereby a field is infinite and connects all the objects in it much like electromagnetic fields influence atomic and molecular charged objects or gravity fields influence inanimate objects with mass such as planets and stars. We use field theory to build what we now call the Network Field Model. In this model, human actors are modeled as pointlike objects in the field. Influence between and investments in these point-like human objects are explained as energy exchanges (potential and kinetic) which can be described in terms of three different types of capital: financial (assets), human capital (the individual) and social (two or more humans in a network). This model is predicated on a field theoretical understanding about the world we live in. We use historical and contemporaneous examples of human activity and describe them in terms of the model. In volume two, we demonstrate how to apply the model. In volume 3, we use experimental data to prove the reliability of the model. These three volumes will persistently challenge the reader’s understanding of time, position and what it means to be part of an infinite field. http://dx.doi.org/10.5772/intechopen.99709
We aim to understand the interaction between shifting organizational field logics and field actors’ responses to reconcile logic plurality and maintain legitimacy through business model innovation. Drawing on a multimethod, longitudinal field study in the fashion industry, we traced how de novo and incumbent firms integrate circular logics in business models (for sustainability) and uncover how productive tensions in field logics lead to experimental spaces for business model innovation. Our findings showed a shift in the discourse on circular logic that diverted attention and resources from materials innovation (e.g. recycling) to business model innovation (e.g. circular business models). By juxtaposing the degree of field logic tension and the degree of business model innovation, we derive four types of business model hybridization responses that actors engaged in to maintain legitimacy – constrained, limited, integrated, and expanded. Our study generates new insights on business models for sustainability as vehicles for organizational field change.
De digitale transitie van mkb’s, met name in de maakindustrie, is goed onderweg, maar verre van afgerond. Er is een grote vraag naar het invoeren van het (Industrial) Internet of Things om procesdata van productiesystemen te bemachtigen en deze vervolgens te analyseren. Deze analysestap heeft een verdere interesseboost gekregen door de mogelijkheden van artificiële intelligentie (AI), waarmee data-analyses naar een complexer niveau getild kunnen worden. In het RAAK-mkb-project Data in Smart Industry staat deze vraag naar de mogelijkheden van IoT en AI centraal: welke data moeten en kunnen we verzamelen en vervolgens op welke manier analyseren? Met bedrijfspartners uit de maakindustrie zijn verschillende casussen IoT-technologie en machine learning (een subdomein van AI) ingezet in pilot studies. Ter afsluiting van het project wordt, in samenwerking met de brancheorganisatie FME en het smartindustryplatform Boost, en vanuit het RAAK-mkb-project Focus op Vision, een aantal trainingssessies georganiseerd rondom AI. Hierbij wordt het bedrijfsleven onderwezen in het toepassen van AI-technologie vanuit een procesmatig en technisch perspectief, waarbij lering wordt getrokken uit de casussen van het Data in Smart Industry-project. De Top-up-subsidie dient het doel om de geleerde lessen uit het RAAK-mkb-project verder te laten landen in de regio Oost-Nederland. Instrumentaal hierin is TValley, een fieldlab gericht op de ontwikkeling van mechatronische systemen zoals industriële robotica. Met de Top-up-subsidie kan TValley uitgebreid worden met een pijler omtrent IoT en AI, vakgebieden die deels overlap hebben met het huidige domein van het fieldlab. Hiervoor worden de ontwikkelde leermaterialen ingezet en doorontwikkeld om kennis te verspreiden en nieuwe bedrijfscasussen op te starten rondom de thema’s IoT en AI binnen TValley.
Evaluating player game experiences through biometric measurementsThe BD4CG (Biometric Design for Casual Games project) worked in a highly interdisciplinary context with several international partners. The aim of our project was to popularize the biometric method, which is a neuro-scientific approach to evaluating the player experience. We specifically aimed at the casual games sector, where casual games can be defined as video or web-based games with simple and accessible game mechanics, non threatening themes and generally short play sessions. Popular examples of casual games are Angry Birds and FarmVille. We focussed on this sector because it is growing fast, but its methodologies have not grown with it yet. Especially the biometrics method has so far been almost exclusively used domain by the very large game developers (such as Valve and EA). The insights and scientific output of this project have been enthusiastically embraced by the international academic arena. The aim of the grant was to focus on game producers in the casual sector, and we have done so but we also established further contacts with the game sector in general. Thirty-one outputs were generated, in the form of presentations, workshops, and accepted papers in prominent academic and industry journals in the field of game studies and game user research. Partners: University of Antwerpen, RANJ, Forward Games, Double Jungle, Realgames, Dreams of Danu, Codemasters, Dezzel, Truimph Studios, Golabi Studios
“Empowering learners to create a sustainable future” This is the mission of Centre of Expertise Mission-Zero at The Hague University of Applied Sciences (THUAS). The postdoc candidate will expand the existing knowledge on biomimicry, which she teaches and researches, as a strategy to fulfil the mission of Mission-Zero. We know when tackling a design challenge, teams have difficulties sifting through the mass of information they encounter. The candidate aims to recognize the value of systematic biomimicry, leading the way towards the ecosystems services we need tomorrow (Pedersen Zari, 2017). Globally, biomimicry demonstrates strategies contributing to solving global challenges such as Urban Heat Islands (UHI) and human interferences, rethinking how climate and circular challenges are approached. Examples like Eastgate building (Pearce, 2016) have demonstrated successes in the field. While biomimicry offers guidelines and methodology, there is insufficient research on complex problem solving that systems-thinking requires. Our research question: Which factors are needed to help (novice) professionals initiate systems-thinking methods as part of their strategy? A solution should enable them to approach challenges in a systems-thinking manner just like nature does, to regenerate and resume projects. Our focus lies with challenges in two industries with many unsustainable practices and where a sizeable impact is possible: the built environment (Circularity Gap, 2021) and fashion (Joung, 2014). Mission Zero has identified a high demand for Biomimicry in these industries. This critical approach: 1) studies existing biomimetic tools, testing and defining gaps; 2) identifies needs of educators and professionals during and after an inter-disciplinary minor at The Hague University; and, 3) translates findings into shareable best practices through publications of results. Findings will be implemented into tangible engaging tools for educational and professional settings. Knowledge will be inclusive and disseminated to large audiences by focusing on communication through social media and intervention conferences.