Occupational stress can cause all kinds of health problems. Resilience interventions that help employees deal with and adapt to adverse events can prevent these negative consequences. Due to advances in sensor technology and smartphone applications, relatively unobtrusive self-monitoring of resilience-related outcomes is possible. With models that can recognize intra-individual changes in these outcomes and relate them to causal factors within the employee’s own context, an automated resilience intervention that gives personalized, just-in-time feedback can be developed. The Wearables and app-based resilience Modelling in employees (WearMe) project aims to develop such models. A cyclical conceptual framework based on existing theories of stress and resilience is presented, as the basis for the WearMe project. The included concepts are operationalized and measured using sleep tracking (Fitbit Charge 2), heart rate variability measurements (Elite HRV + Polar H7) and Ecological Momentary Assessment (mobile app), administered in the morning (7 questions) and evening (12 questions). The first (ongoing) study within the WearMe project investigates the feasibility of the developed measurement cycle and explores the development of such models in social studies students that are on their first major internship. Analyses will target the development of both within-subject (n=1) models, as well as between-subjects models. The first results will be shared at the Health By Tech 2019 conference in Groningen. If successful, future work will focus on further developing these models and eventually exploring the effectiveness of the envisioned personalized resilience system.
Occupational stress can cause all kinds of health problems. Resilience interventions that help employees deal with and adapt to adverse events can prevent these negative consequences. Due to advances in sensor technology and smartphone applications, relatively unobtrusive self-monitoring of resilience-related outcomes is possible. With models that can recognize intra-individual changes in these outcomes and relate them to causal factors within the employee’s own context, an automated resilience intervention that gives personalized, just-in-time feedback can be developed. The Wearables and app-based resilience Modelling in employees (WearMe) project aims to develop such models. A cyclical conceptual framework based on existing theories of stress and resilience is presented, as the basis for the WearMe project. The included concepts are operationalized and measured using sleep tracking (Fitbit Charge 2), heart rate variability measurements (Elite HRV + Polar H7) and Ecological Momentary Assessment (mobile app), administered in the morning (7 questions) and evening (12 questions). The first (ongoing) study within the WearMe project investigates the feasibility of the developed measurement cycle and explores the development of such models in social studies students that are on their first major internship. Analyses will target the development of both within-subject (n=1) models, as well as between-subjects models. The first results will be shared at the Health By Tech 2019 conference in Groningen. If successful, future work will focus on further developing these models and eventually exploring the effectiveness of the envisioned personalized resilience system.
There remains some debate about whether beta power effects observed during sentence comprehension reflect ongoing syntactic unification operations (beta-syntax hypothesis), or instead reflect maintenance or updating of the sentence-level representation (beta-maintenance hypothesis). In this study, we used magnetoencephalography to investigate beta power neural dynamics while participants read relative clause sentences that were initially ambiguous between a subject- or an object-relative reading. An additional condition included a grammatical violation at the disambiguation point in the relative clause sentences. The beta-maintenance hypothesis predicts a decrease in beta power at the disambiguation point for unexpected (and less preferred) object-relative clause sentences and grammatical violations, as both signal a need to update the sentence-level representation. While the beta-syntax hypothesis also predicts a beta power decrease for grammatical violations due to a disruption of syntactic unification operations, it instead predicts an increase in beta power for the object-relative clause condition because syntactic unification at the point of disambiguation becomes more demanding. We observed decreased beta power for both the agreement violation and object-relative clause conditions in typical left hemisphere language regions, which provides compelling support for the beta-maintenance hypothesis. Mid-frontal theta power effects were also present for grammatical violations and object-relative clause sentences, suggesting that violations and unexpected sentence interpretations are registered as conflicts by the brain's domain-general error detection system.
MULTIFILE