Dienst van SURF
© 2025 SURF
We examined the neural correlates of facial attractiveness by presenting pictures of male or female faces (neutral expression) with low/intermediate/high attractiveness to 48 male or female participants while recording their electroencephalogram (EEG). Subjective attractiveness ratings were used to determine the 10% highest, 10% middlemost, and 10% lowest rated faces for each individual participant to allow for high contrast comparisons. These were then split into preferred and dispreferred gender categories. ERP components P1, N1, P2, N2, early posterior negativity (EPN), P300 and late positive potential (LPP) (up until 3000 ms post-stimulus), and the face specific N170 were analysed. A salience effect (attractive/unattractive > intermediate) in an early LPP interval (450–850 ms) and a long-lasting valence related effect (attractive > unattractive) in a late LPP interval (1000–3000 ms) were elicited by the preferred gender faces but not by the dispreferred gender faces. Multi-variate pattern analysis (MVPA)-classifications on whole-brain single-trial EEG patterns further confirmed these salience and valence effects. It is concluded that, facial attractiveness elicits neural responses that are indicative of valenced experiences, but only if these faces are considered relevant. These experiences take time to develop and last well beyond the interval that is commonly explored.
MULTIFILE
Introduction: Zygomatic fractures can be diagnosed with either computed tomography (CT) or direct digital radiography (DR). The aim of the present study was to assess the effect of CT dose reduction on the preference for facial CT versus DR for accurate diagnosis of isolated zygomatic fractures. Materials and methods: Eight zygomatic fractures were inflicted on four human cadavers with a free fall impactor technique. The cadavers were scanned using eight CT protocols, which were identical except for a systematic decrease in radiation dose per protocol, and one DR protocol. Single axial CT images were displayed alongside a DR image of the same fracture creating a total of 64 dual images for comparison. A total of 54 observers, including radiologists, radiographers and oral and maxillofacial surgeons, made a forced choice for either CT or DR. Results: Forty out of 54 observers (74%) preferred CT over DR (all with P < 0.05). Preference for CT was maintained even when radiation dose reduced from 147.4 mSv to 46.4 mSv (DR dose was 6.9 mSv). Only a single out of all raters preferred DR (P ¼ 0.0003). The remaining 13 observers had no significant preference. Conclusion: This study demonstrates that preference for axial CT over DR is not affected by substantial (~70%) CT dose reduction for the assessment of zygomatico-orbital fractures.
MULTIFILE
In this project, the AGM R&D team developed and refined the use of a facial scanning rig. The rig is a physical device comprising multiple cameras and lighting that are mounted on scaffolding around a 'scanning volume'. This is an area at which objects are placed before being photographed from multiple angles. The object is typically a person's head, but it can be anything of this approximate size. Software compares the photographs to create a digital 3D recreation - this process is called photogrammetry. The 3D model is then processed by further pieces of software and eventually becomes a face that can be animated inside in Unreal Engine, which is a popular piece of game development software made by the company Epic. This project was funded by Epic's 'Megagrant' system, and the focus of the work is on streamlining and automating the processing pipeline, and on improving the quality of the resulting output. Additional work has been done on skin shaders (simulating the quality of real skin in a digital form) and the use of AI to re/create lifelike hair styles. The R&D work has produced significant savings in regards to the processing time and the quality of facial scans, has produced a system that has benefitted the educational offering of BUas, and has attracted collaborators from the commercial entertainment/simulation industries. This work complements and extends previous work done on the VIBE project, where the focus was on creating lifelike human avatars for the medical industry.