This paper introduces the Analysis Framework of Face Interaction (AFFI) which is developed based on a new face dimension termed Face Confirmation − Face Confrontation at two levels: Individual level within the group and Collective level between groups. This proposed framework of face analysis reveals a dearth of research on face confrontation as essential communication strategies. It also points out how the mainstream research on facework has been limited on the collective level of analysis. The authors argue that using AFFI will help researchers reduce cultural over-generalisation; enable them to involve more specific cultural, contextual and situational characteristics of each face case to analyse face negotiation from a more holistic perspective.
This paper introduces the Analysis Framework of Face Interaction (AFFI) which is developed based on a new face dimension termed Face Confirmation − Face Confrontation at two levels: Individual level within the group and Collective level between groups. This proposed framework of face analysis reveals a dearth of research on face confrontation as essential communication strategies. It also points out how the mainstream research on facework has been limited on the collective level of analysis. The authors argue that using AFFI will help researchers reduce cultural over-generalisation; enable them to involve more specific cultural, contextual and situational characteristics of each face case to analyse face negotiation from a more holistic perspective.
Closed loop or ‘circular’ production systems known as Circular Economy and Cradle to Cradle represent a unique opportunity to radically revise the currently wasteful system of production. One of the challenges of such systems is that circular products need to be both produced locally with minimum environmental footprint and simultaneously satisfy demand of global consumers. This article presents a literature review that describes the application of circular methodologies to education for sustainability, which has been slow to adopt circular systems to the curriculum. This article discusses how Bachelor and Master-level students apply their understanding of these frameworks to corporate case studies. Two assignment-related case studies are summarized, both of which analyze products that claim to be 'circular'. The students' research shows that the first case, which describes the impact of a hybrid material soda bottle, does not meet circularity criteria. The second case study, which describes products and applications of a mushroom-based material, is more sustainable. However, the students' research shows that the manufacturers have omitted transport from the environmental impact assessment and therefore the mushroom materials may not be as sustainable as the manufacturers claim. As these particular examples showed students how green advertising can be misleading, applying “ideal” circularity principles as part of experiential learning could strengthen the curriculum. Additionally, this article recommends that sustainable business curriculum should also focus on de-growth and steady-state economy, with these radical alternatives to production becoming a central focus of education of responsible citizens. https://doi.org/10.1016/j.jclepro.2019.02.005 LinkedIn: https://www.linkedin.com/in/helenkopnina/
MULTIFILE
Routine neuropathology diagnostic methods are limited to histological staining techniques or directed PCR for pathogen detection and microbial cultures of brain abscesses are negative in one-third of the cases. Fortunately, due to improvements in technology, metagenomic sequencing of a conserved bacterial gene could provide an alternative diagnostic method. For histopathological work up, formalin-fixed paraffin-embedded (FFPE) tissue with highly degraded nucleic acids is the only material being available. Innovative amplicon-specific next-generation sequencing (NGS) technology has the capability to identify pathogens based on the degraded DNA within a few hours. This approach significantly accelerates diagnostics and is particularly valuable to identify challenging pathogens. This ensures optimal treatment for the patient, minimizing unnecessary health damage. Within this project, highly conserved primers in a universal PCR will be used, followed by determining the nucleotide sequence. Based on the obtained data, it is then precisely determined which microorganism(s) is/are responsible for the infection, even in cases of co-infection with multiple pathogens. This project will focus to answer the following research question; how can a new form of rapid molecular diagnostics contribute to the identification of microbial pathogens in CNS infections? The SME partner Molecular Biology Systems B.V. (MBS) develops and sells equipment for extremely rapid execution of the commonly used PCR. In this project, the lectorate Analysis Techniques in the Life Sciences (Avans) will, in collaboration with MBS, Westerdijk Institute (WI-KNAW) and the Institute of Neuropathology (Münster, DE) establish a new molecular approach for fast diagnosis within CNS infections using this MBS technology. This enables the monitoring of infectious diseases in a fast and user-friendly manner, resulting in an improved treatment plan.
In summer 2020, part of a quay wall in Amsterdam collapsed, and in 2010, construction for a parking lot in Amsterdam was hindered by old sewage lines. New sustainable electric systems are being built on top of the foundations of old windmills, in places where industry thrived in the 19th century. All these examples have one point in common: They involve largely unknown and invisible historic underground structures in a densely built historic city. We argue that truly circular building practices in old cities require smart interfaces that allow the circular use of data from the past when planning the future. The continuous use and reuse of the same plots of land stands in stark contrast with the discontinuity and dispersed nature of project-oriented information. Construction and data technology improves, but information about the past is incomplete. We have to break through the lack of historic continuity of data to make building practices truly circular. Future-oriented construction in Amsterdam requires historic knowledge and continuous documentation of interventions and findings over time. A web portal will bring together a range of diverse public and private, professional and citizen stakeholders, each with their own interests and needs. Two creative industry stakeholders, Yume interactive (Yume) and publisher NAI010, come together to work with a major engineering office (Witteveen+Bos), the AMS Institute, the office of Engineering of the Municipality of Amsterdam, UNESCO NL and two faculties of Delft University of Technology (Architecture and Computer Science) to inventorize historic datasets on the Amsterdam underground. The team will connect all the relevant stakeholders to develop a pilot methodology and a web portal connecting historic data sets for use in contemporary and future design. A book publication will document the process and outcomes, highlighting the need for circular practices that tie past, present and future.