Dienst van SURF
© 2025 SURF
In deze rapportage staat het functioneren en beoordelen van professionals in het hbo centraal. In het project Experimental Learning Labs: Functioneren en Beoordelen in Teams zijn we, mede dankzij de steun vanuit de stimuleringsregeling van Zestor, op zoek gegaan naar andere en innovatieve manieren om de HR-cyclus vorm te geven en onderlinge feedback in teams te stimuleren, op een manier die beter aansluit bij de ontwikkelingen in de organisatie, de sector en bij de wensen en behoeften van medewerkers. Het project is uitgevoerd door en met medewerkers van de Hogeschool van Amsterdam (HvA). Aan het project deden professionals in 3 teams, HR professionals en een aantal medewerkers van het lectoraat Samenwerkende Professionals (voorheen Teamprofessionalisering) mee. Door in ‘Experimental Learning Labs’ in een drietal verschillende teams met nieuwe vormen van aanspreken en feedback geven te experimenteren1, heeft het project input gegeven en inspiratie opgeleverd voor een meer passende kijk op en aanpak van de HR-cyclus binnen de hogeschool. Deze Experimental Learning Labs zijn uitgevoerd onder begeleiding van het lectoraat Samenwerkende Professionals in samenwerking met de HR-werkgroep ‘Functioneren & Beoordelen’
Experimental Learning and Innovation Environments, such as Living Labs, Field Labs, and Urban Innovation Labs, are increasingly used to connect multi-stakeholders in envisioning, creating, experimenting, learning, and trying out novel responses to diverse societal challenges. With designers facilitating the co-creation processes that take place in these labs, the design discipline plays an important role in these experimental environments. Applied Design Research in Living Labs and other Experimental Learning and Innovation Environments combines a focus on Experimental Learning and Innovation Environments (or Living Labs) with a focus on Applied Design Research. It offers an interdisciplinary perspective by bringing together diverse stakeholders from different disciplines. The book will adopt an interdisciplinary perspective, integrating insights from design, innovation, sociology, technology, and other relevant fields. It showcases real-world examples and case studies of successful Applied Design Research in Living Labs and focuses on design dilemmas that emerge while working in these Experimental Learning and Innovation Environments. The book explores the role of various stakeholders, including the roles that may play out during the development of Experimental Learning and Innovation Environments, and goes on to discuss the balance between fixed or fluid roles of these stakeholders and the polarity between working within one specific discipline versus working with various expertise or disciplines. Designers, government representatives, and researchers who apply a living lab approach to solve multi-stakeholder challenges in various fields by applying Urban Innovation Labs, Energy Living Labs, Mobility Living Labs, Health Living Labs, Education Living Labs, or Social Living Labs will find this book of interest.
LINK
Loneliness and social isolation are increasingly recognized as important challenges of our times. Inspired by research hinting at beneficial effects of interacting with nature on social connectedness and opportunities provided by ambient technology to simulate nature in a rich and engaging manner, this study explored to what extent digital nature projections can stimulate social aspirations and related emotions. To this end, participants (N = 96) were asked to watch, individually or in pairs, digital nature projections consisting of animated scenes which were either dense or spacious and depicting either wild or tended nature. Subsequently, they filled out a questionnaire comprising measures for social aspirations, awe and fascination. Results show that spacious scenes elicited significantly higher social aspiration and awe scores, especially when watching alone. Design implications are discussed for making digital nature accessible for people with limited access to real nature.
Size measurement plays an essential role for micro-/nanoparticle characterization and property evaluation. Due to high costs, complex operation or resolution limit, conventional characterization techniques cannot satisfy the growing demand of routine size measurements in various industry sectors and research departments, e.g., pharmaceuticals, nanomaterials and food industry etc. Together with start-up SeeNano and other partners, we will develop a portable compact device to measure particle size based on particle-impact electrochemical sensing technology. The main task in this project is to extend the measurement range for particles with diameters ranging from 20 nm to 20 um and to validate this technology with realistic samples from various application areas. In this project a new electrode chip will be designed and fabricated. It will result in a workable prototype including new UMEs (ultra-micro electrode), showing that particle sizing can be achieved on a compact portable device with full measuring range. Following experimental testing with calibrated particles, a reliable calibration model will be built up for full range measurement. In a further step, samples from partners or potential customers will be tested on the device to evaluate the application feasibility. The results will be validated by high-resolution and mainstream sizing techniques such as scanning electron microscopy (SEM), dynamic light scattering (DLS) and Coulter counter.
Currently, many novel innovative materials and manufacturing methods are developed in order to help businesses for improving their performance, developing new products, and also implement more sustainability into their current processes. For this purpose, additive manufacturing (AM) technology has been very successful in the fabrication of complex shape products, that cannot be manufactured by conventional approaches, and also using novel high-performance materials with more sustainable aspects. The application of bioplastics and biopolymers is growing fast in the 3D printing industry. Since they are good alternatives to petrochemical products that have negative impacts on environments, therefore, many research studies have been exploring and developing new biopolymers and 3D printing techniques for the fabrication of fully biobased products. In particular, 3D printing of smart biopolymers has attracted much attention due to the specific functionalities of the fabricated products. They have a unique ability to recover their original shape from a significant plastic deformation when a particular stimulus, like temperature, is applied. Therefore, the application of smart biopolymers in the 3D printing process gives an additional dimension (time) to this technology, called four-dimensional (4D) printing, and it highlights the promise for further development of 4D printing in the design and fabrication of smart structures and products. This performance in combination with specific complex designs, such as sandwich structures, allows the production of for example impact-resistant, stress-absorber panels, lightweight products for sporting goods, automotive, or many other applications. In this study, an experimental approach will be applied to fabricate a suitable biopolymer with a shape memory behavior and also investigate the impact of design and operational parameters on the functionality of 4D printed sandwich structures, especially, stress absorption rate and shape recovery behavior.
Synthetic ultra-black (UB) materials, which demonstrate exceptionally high absorbance (>99%) of visible light incident on their surface, are currently used as coatings in photovoltaic cells and numerous other applications. Most commercially available UB coatings are based on an array of carbon nanotubes, which are produced at relatively high temperature and result in numerous by-products. In addition, UB nanotube coatings require harsh application conditions and are very susceptible to abrasion. As a result, these coatings are currently obtained using a manufacturing process with relatively high costs, high energy consumption and low sustainability. Interestingly, an UB coating based on a biologically derived pigment could provide a cheaper and more sustainable alternative. Specifically, GLO Biotics proposes to create UB pigment by taking a bio-mimetic approach and replicate structures found in UB deep-sea fish. A recent study[1] has actually shown that specific fish have melanosomes in their skin with particular dimensions that allow absorption of up to 99.9% of incident light. In addition to this, recent advances in bacterial engineering have demonstrated that it is possible to create bacteria-derived melanin particles with very similar dimensions to the melanosomes in aforementioned fish. During this project, the consortium partners will combine both scientific observations in an attempt to provide the proof-of-concept for developing an ultra-black coating using bacteria-derived melanin particles as bio-based, sustainable pigment. For this, Zuyd University of Applied Sciences (Zuyd) and Maastricht University (UM) collaborate with GLO Biotics in the development of the innovative ‘BLACKTERIA’ UB coating technology. The partners will attempt at engineering an E. coli expression system and adapt its growth in order to produce melanin particles of desired dimensions. In addition, UM will utilize their expertise in industrial coating research to provide input for experimental set-up and the development of a desired UB coating using the bacteria-derived melanin particles as pigment.