In today's world, understanding different viewpoints is key for societal cohesion and progress. Robots have the potential to provide aid in discussing tough topics like ethnicity and gender. However, comparably to humans, the appearance of a robot can trigger inherent prejudices. This study delves into the interplay between robot appearance and decision-making in ethical dilemmas. Employing a Furhat robot that can change faces in an instant, we looked at how robot appearance affects decision-making and the perception of the robot itself. Pairs of participants were invited to discuss a dilemma presented by a robot, covering sensitive topics of ethnicity or gender. The robot either adopted a first-person or third-person perspective and altered its appearance accordingly. Following the explanation, participants were encouraged to discuss their choice of action in the dilemma situation. We did not find significant influences of robot appearance or dilemma topic on perceived anthropomorphism, animacy, likeability, or intelligence of the robot, partly in line with previous research. However, several participants hearing the dilemma from a first-person perspective changed their opinion because of the robot's appearance. Future work can expand with different measures such as engagement, in order to shed light on the intricate dynamics of human-robot interaction, emphasizing the need for thoughtful consideration in designing robot appearances to promote unbiased engagement in discussions of societal significance
In today's world, understanding different viewpoints is key for societal cohesion and progress. Robots have the potential to provide aid in discussing tough topics like ethnicity and gender. However, comparably to humans, the appearance of a robot can trigger inherent prejudices. This study delves into the interplay between robot appearance and decision-making in ethical dilemmas. Employing a Furhat robot that can change faces in an instant, we looked at how robot appearance affects decision-making and the perception of the robot itself. Pairs of participants were invited to discuss a dilemma presented by a robot, covering sensitive topics of ethnicity or gender. The robot either adopted a first-person or third-person perspective and altered its appearance accordingly. Following the explanation, participants were encouraged to discuss their choice of action in the dilemma situation. We did not find significant influences of robot appearance or dilemma topic on perceived anthropomorphism, animacy, likeability, or intelligence of the robot, partly in line with previous research. However, several participants hearing the dilemma from a first-person perspective changed their opinion because of the robot's appearance. Future work can expand with different measures such as engagement, in order to shed light on the intricate dynamics of human-robot interaction, emphasizing the need for thoughtful consideration in designing robot appearances to promote unbiased engagement in discussions of societal significance
Global food systems need to become more sustainable, resilient and inclusive. To accelerate this transition, there is a need for scaling innovative strategies for improved Food and Nutrition Security (FNS), particularly for the poor and marginalised. Scaling, however, is not a straightforward or value-free process. The synthesis study examined which dilemmas influence Research for Impact projects that seek to contribute to FNS outcomes at scale, and how blind spots in scaling research and practice are tied to these dilemmas. Being aware of and tackling these blind spots at an early stage contributes to ‘responsible scaling’: not only focusing on technical and socio-economic, but also on ethical considerations about who will benefit or lose out. The findings presented in the full paper are based on insights from ten interdisciplinary research projects funded by NWO-WOTRO that were carried out in countries in East, Southern and the Horn of Africa between 2014–2020.
CRISPR/Cas genome engineering unleashed a scientific revolution, but entails socio-ethical dilemmas as genetic changes might affect evolution and objections exist against genetically modified organisms. CRISPR-mediated epigenetic editing offers an alternative to reprogram gene functioning long-term, without changing the genetic sequence. Although preclinical studies indicate effective gene expression modulation, long-term effects are unpredictable. This limited understanding of epigenetics and transcription dynamics hampers straightforward applications and prevents full exploitation of epigenetic editing in biotechnological and health/medical applications.Epi-Guide-Edit will analyse existing and newly-generated screening data to predict long-term responsiveness to epigenetic editing (cancer cells, plant protoplasts). Robust rules to achieve long-term epigenetic reprogramming will be distilled based on i) responsiveness to various epigenetic effector domains targeting selected genes, ii) (epi)genetic/chromatin composition before/after editing, and iii) transcription dynamics. Sustained reprogramming will be examined in complex systems (2/3D fibroblast/immune/cancer co-cultures; tomato plants), providing insights for improving tumor/immune responses, skin care or crop breeding. The iterative optimisations of Epi-Guide-Edit rules to non-genetically reprogram eventually any gene of interest will enable exploitation of gene regulation in diverse biological models addressing major societal challenges.The optimally balanced consortium of (applied) universities, ethical and industrial experts facilitates timely socioeconomic impact. Specifically, the developed knowledge/tools will be shared with a wide-spectrum of students/teachers ensuring training of next-generation professionals. Epi-Guide-Edit will thus result in widely applicable effective epigenetic editing tools, whilst training next-generation scientists, and guiding public acceptance.
With the help of sensors that made data collection and processing possible, many products around us have become “smarter”. The situation that our car, refrigerator, or umbrella communicating with us and each other is no longer a future scenario; it is increasingly a shared reality. There are good examples of such connectedness such as lifestyle monitoring of elderly persons or waste management in a smart city. Yet, many other smart products are designed just for the sake of embedding a chip in something without thinking through what kind of value they add everyday life. In other words, the design of these systems have mainly been driven by technology until now and little studies have been carried out on how the design of such systems helps citizens to improve or maintain the quality of their individual and collective lives. The CREATE-IT research center creates new solutions and methodologies in “digital design” that contribute to the quality of life of citizens. Correspondingly, this proposal focuses on one type of digital design—smart products—and investigate the concept of empowerment in relation to the design of smart products. In particular, the proposal aims to develop a model with its supplementary tools and methods for designing such products better. By following a research-through-design methodology, the proposal intends to offer a critical understanding on designing smart products. Along with its theoretical contribution, the proposal will also aid the students of ICT and design, and professionals such as designers and engineers to create smart products that will empower people and the industry to develop products grounded in a clear user experience and business model.