Dienst van SURF
© 2025 SURF
Lectorale redeboekje naar aanleiding van de intrede in het lectoraat Systeemintegratie in de energietransitie
MULTIFILE
Far from being negligible in quantity, decentralized energy production delivers a considerable part of the renewable energy production in the Netherlands. Decentralized production takes place by individual households, companies as well as citizen groups. Grassroots initiatives have sprung up in the Netherlands in the last 5 years, in a recent inventory 313 formally instituted local energy cooperatives were found. Cooperatives’ aims are sustainability, strengthening local economy and promoting a democratic governance structure for energy production.The energy industry in the Netherlands has traditionally been dominated by large energy companies, and the Groningen gas field has resulted in a very high dependency on natural gas for both consumer and business households. The climate for grassroots initiatives has improved since the so-called Energy Covenant in 2013. This covenant pertains to an agreement between government, industry representatives, labor unions and non-governmental organizations to arrive at a substantial reduction of energy use, ambitious increase in the production of renewable energy, and new jobs in the renewable energy sector.The covenant also announced new policies to stimulate community energy activities, such as the Zip-code-rose policy . The governmental interest in new forms of energy transition, is also demonstrated by the ‘Experiments Electricity Law’ facility, which gives local business and community initiatives an opportunity to experiment with a local energy system. This policy is meant as a ‘learning facility’; experiences are expected to lead to adaptations in Dutch electricity law and regulation.
To facilitate energy transition, in several countries regulators have devised ‘regulatory sandboxes’ to create a participatory experimentation environment for exploring revision of energy law. These sandboxes allow for a two-way regulatory dialogue between an experimenter and an approachable regulator to innovate regulation and enable new socio-technical arrangements. However, these experiments do not take place in a vacuum but need to be formulated and implemented in a multi-actor, polycentric decision-making system through collaboration with the regulator but also energy sector incumbents such as the distribution system operator. We are, therefore, exploring new roles and power division changes in the energy sector as a result of such a regulatory sandbox. We research the Dutch Energy Experimentation Decree (EED) that invites homeowners’ associations and energy cooperatives to propose projects prohibited by extant regulation. In order to localize, democratize and decentralize energy provision, local experimenters can, for instance, organise peer-to-peer supply and determine their own tariffs for energy transport. Theoretically, we rely on Ostrom’s concept of polycentricity to study the dynamics between actors involved in and engaging with the participatory experiments. Empirically, we examine 4 approved EED experiments through interviews and document analysis. Our conclusions focus on the potential and limitations of bottom-up, participatory innovation in a polycentric system. The most important lessons are that a more holistic approach to experimentation, inter-actor alignment, providing more incentives, and expert and financial support would benefit bottom-up participatory innovation.
LINK
Client: Blue Plan regional activity centre (UNEP/MAP), subcontracted through TEC Conseille, Marseille As part of a regional workshop organized by the Blue Plan in July 2008, one of the conclusions of the Group "Tourism and Climate Change” was the need for saving energy in tourism transportation and particularly of air transport, as air transport is responsible for the largest share of greenhouse gas emissions caused by tourism. In the period 1998-2005, the share of international arrivals by air in the Mediterranean area rose from 23% to 40%, respectively, or in numbers, from 47 to 122 million tourists. Some countries, particularly islands, almost entirely depend on air transport for their international tourism. For example in 2005 air transport is used by 87%, 78%, 73%, 64% and 51% of international tourists arriving in, respectively, Israel, Egypt, Spain, Tunisia and Morocco. According to Plan Bleu forecasts on international arrivals, assuming that the share of air transport remains the same, the number of tourists travelling by plane will reach over 158 million by 2025. Given the role of aviation in the emissions of greenhouse gases (GHG), such a development is clearly not sustainable in the light of the necessary reduction of emissions to avoid dangerous climate change. The overall aim of the study is to inform policy makers and entrepreneurs in both destination and in origin countries, on possible options to reduce emissions of greenhouse gases from air travel, while at the same time not impairing the economic development of tourism. To do this, CSTT has developed a tourism scenario model for all countries with Mediterranean coasts describing inbound and outbound international tourism and domestic tourism by all available transport modes and giving both contributions to GDP and total GHG emissions. This model responses to global mitigation policies (increasing the cost of carbon emissions) as well as national policies (taxes, subsidies and changes in transport quality per transport mode). Using the model both global and national policies can be assessed as well as the risks of global mitigation policies for specific countries.