Dienst van SURF
© 2025 SURF
The municipality of Apeldoorn had polled the interest among its private home-owners to turn their homes energy neutral. Based on the enthusiastic response, Apeldoorn saw the launch of the Energy Apeldoorn (#ENEXAP) in 2011. Its goal was to convert to it technically and financially possible for privately owned homes to be refurbished and to energy neutral, taking the residential needs and wishes from occupants as the starting point. The project was called an Expedition, because although the goal was clear, the road to get there wasn’t. The Expedition team comprised businesses, civil-society organisations, the local university of applied sciences, the municipality of Apeldoorn, and of course, residents in a central role. The project was supported by Platform31, as part of the Dutch government’s Energy Leap programme. The #ENEXAP involved 38 homes, spread out through Apeldoorn and surrounding villages. Even though the houses were very diverse, the group of residents was quite similar: mostly middle- aged, affluent people who highly value the environment and sustainability. An important aspect of the project was the independent and active role residents played. In collaboration with businesses and professionals, through meetings, excursions, workshops and by filling in a step- by-step plan on the website, the residents gathered information about their personal situation, the energy performance of their home and the possibilities available for them to save and generate energy themselves. Businesses were encouraged to develop an integrated approach for home-owners, and consortia were set up by businesses to develop the strategy, products and services needed to meet this demand. On top of making minimal twenty from the thirty-eight houses in the project energy neutral, the ultimate goal was to boost the local demand for energy- neutral refurbishment and encourage an appropriate supply of services, opening up the (local) market for energy neutral refurbishment. This paper will reflect on the outcomes of this collective in the period 2011-2015.
The energy transition requires the transformation of communities and neighbourhoods. It will have huge ramifications throughout society. Many cities, towns and villages have put together ambitious visions about how to achieve e.g. energy neutrality, zero-emission or zero-impact. What is happening at the local level towards realizing these ambitions? In a set of case study’s we investigate the following questions: How are self-organized local energy initiatives performing their self-set tasks? What obstacles are present in the current societal set-up that can hinder decentralized energy production? In our cases local leadership, vision, level of communication and type of organisation are important factors of the strength of the ‘local network’. (Inter)national energy policy and existing energy companies largely determine the ‘global’ or outside network. Stronger regional and national support structures, as well as an enabling environment for decentralized energy production, are needed to make decentralized sustainable energy production a success.
Abstract: The transition towards renewable and sustainable energy is being accompanied by a transformation of communities and neighbourhoods. This transition may have huge ramifications throughout society. Many cities, towns and villages are putting together ambitious visions about how to achieve 100% sustainable energy, energy neutrality, zero carbon emission or zero-impact of their communities. We investigate what is happening at the local community level towards realizing these ambitions from a social perspective. We use the case study approach to answer the following question: how do local community energy initiatives contribute to a decentralized sustainable energy system? We find that especially the development of a shared vision, the level of activities and the type of organisation are important factors of the strength of the ‘local network’.
The EU Climate and Energy Policy Framework targets a 40% reduction in Greenhouse Gases (GHGs) emission by companies (when compared to 1990’s values) in 2030 [1]. Preparing for that future, many companies are working to reach climate neutrality in 2030. For water and wastewater treatment plants aeration processes could represent up to 70% of the whole energy consumption of the plant. Thus, a process which must be carefully evaluated if climate neutrality is a target. VortOx is an alternative to reduce power consumption in aeration processes. It is structured to test the applicability of geometrically constrained vortices in a hyperbolic funnel (aka “Schauberger”- funnel) as an innovative aeration technique for this industry. Recent investigations have shown that such systems allow an average of 12x more oxygen transfer coefficients (KLa) than that of comparable methods like air jets or impellers [10]. However, the system has a relatively small hydraulic retention time (HRT), which compromises its standard oxygen transfer ratio (SOTR). Additionally, so far, the system has only been tested in pilot (lab) scale. Vortox will tackle both challenges. Firstly, it will test geometry and flow adaptations to increase HRT keeping the same KLa levels. And secondly, all will be done using a real scale hyperbolic funnel and real effluent from Leeuwarden’s wastewater treatment plant demo-site. If proven feasible, Vortox can be a large step towards climate neutral water and wastewater treatment systems.