Dienst van SURF
© 2025 SURF
Contrary to most sectors, to date the tourism and aviation industries have not managed to level off greenhouse gas emissions. Moreover, effective mitigation through technological innovation or structural and behavioural change cannot be expected shortly. Airlines and tourism companies appear to use carbon offsetting as a last resort. However, offsetting is generally acknowledged as a second-best solution for mitigating emissions, after reducing energy use. This paper seeks to determine the mitigation potential of voluntary carbon offsetting by comparing public and industry awareness of climate change and aviation emissions, and attitudes to various mitigation measures with relevant online communication by 64 offset providers. Methods were a literature review and online content analyses. Overall, the gaps that were identified between awareness, attitude and actual behaviour are not bridged by provider communication. From this perspective, the mitigation potential of voluntary carbon offsetting for achieving reductions of tourism transport emissions is estimated as low. The same conclusion is reached by comparing carbon dioxide volumes of flight offsets with actual air travel emissions. Current sales of flight offsets compensate less than 1% of all aviation emissions.
MULTIFILE
Airport management is often challenged by the task of managing aircraft parking positions most efficiently while complying with environmental regulations and capacity restrictions. Frequently this task is additionally affected by various perturbations, affecting punctuality of airport operations. This paper presents an innovative approach for obtaining an efficient stand assignment considering the stochastic nature of the airport environment and emissions reduction target of the modern air transportation industry. Furthermore, the presented methodology demonstrates how the same procedure of creating a stand assignment can help to identify an emissions mitigation potential. This paper illustrates the application of the presented methodology combined with simulation and demonstrates the impact of the application of Bayesian modeling and metaheuristic optimization for reduction of taxi-related emissions.
This research examines the impact of transitioning to an autonomous operation on the airside of Schiphol airport, with a specific focus on emissions that affect both the environment and the staff working within airport premises. This study will explore current emissions from vehicles on Schiphol's airside, assessing their environmental impact and identifying harmful emissions. It will evaluate potential solutions, notably the role of electric vehicles, comparing this to the status quo before mapping the transition to an autonomous airside and its environmental consequences. A significant focus will be on the implications for staff working in these conditions. Additionally, it will review relevant laws and regulations to propose improvements, aiming to enhance Schiphol's environmental footprint. Conducted by Bright Sky for Schiphol Airport, this research aims to address overlooked harmful substances at the airport, seeking prompt solutions. Utilized by Schiphol, the findings will shed light on the necessity for innovation towards electric and autonomous vehicles, underlining the urgency for environmental improvements and technological advancements to tackle pollution issues effectively.
MULTIFILE
The primary objective of the project is to identify policies for the transformation of the Norwegian tourism sector to become resilient to climate change and carbon risks; to maintain and develop its economic benefits; and to significantly reduce its emissions-intensity per unit of economic output. Collaborative partnersStiftinga Vestlandforsking, Stiftelsen Handelshoyskolen, Stat Sentralbyra, Norges Handelshoyskole, Stiftelsen Nordlandsforskning, Fjord Norge, Hurtigruten, Neroyfjorden Verdsarvpark, Uni Waterloo, Uni Queensland, Desinasjon Voss, Stift Geirangerfjorden Verdsarv, Hogskulen Pa Vestlandet.
In the context of global efforts to increase sustainability and reduce CO2 emissions in the chemical industry, bio-based materials are receiving increasing attention as renewable alternatives to petroleum-based polymers. In this regard, Visolis has developed a bio-based platform centered around the efficient conversion of plant-derived sugars to mevalonolactone (MVL) via microbial fermentation. Subsequently, MVL is thermochemically converted to bio-monomers such as isoprene and 3-methyl-1,5-pentane diol, which are ultimately used in the production of polymer materials. Currently, the Visolis process has been optimized to use high-purity, industrial dextrose (glucose) as feedstock for their fermentation process. Dutch Sustainable Development (DSD) has developed a direct processing technology in which sugar beets are used for fermentation without first having to go through sugar extraction and refinery. The main exponent of this technology is their patented Betaprocess, in which the sugar beet is essentially exposed to heat and a mild vacuum explosion, opening the cell walls and releasing the sugar content. This Betaprocess has the potential to speed up current fermentation processes and lower feedstock-related costs. The aim of this project is to combine aforementioned technologies to enable the production of mevalonolactone using sucrose, present in crude sugar beet bray after Betaprocessing. To this end, Zuyd University of Applied Sciences (Zuyd) intends to collaborate with Visolis and DSD. Zuyd will utilize its experience in both (bio)chemical engineering and fermentation to optimize the process from sugar beet (pre)treatment to product recovery. Visolis and DSD will contribute their expertise in microbial engineering and low-cost sugar production. During this collaboration, students and professionals will work together at the Chemelot Innovation and Learning Labs (CHILL) on the Brightlands campus in Geleen. This collaboration will not only stimulate innovation and sustainable chemistry, but also provides starting professionals with valuable experience in this expanding field.
Buildings are responsible for approximately 40% of energy consumption and 36% of carbon dioxide (CO2) emissions in the EU, and the largest energy consumer in Europe (https://ec.europa.eu/energy). Recent research shows that more than 2/3 of all CO2 is emitted during the building process whereas less than 1/3 is emitted during use. Cement is the source of about 8% of the world's CO2 emissions and innovation to create a distributive change in building practices is urgently needed, according to Chatham House report (Lehne et al 2018). Therefore new sustainable materials must be developed to replace concrete and fossil based building materials. Lightweight biobased biocomposites are good candidates for claddings and many other non-bearing building structures. Biocarbon, also commonly known as Biochar, is a high-carbon, fine-grained solid that is produced through pyrolysis processes and currently mainly used for energy. Recently biocarbon has also gained attention for its potential value with in industrial applications such as composites (Giorcellia et al, 2018; Piri et.al, 2018). Addition of biocarbon in the biocomposites is likely to increase the UV-resistance and fire resistance of the materials and decrease hydrophilic nature of composites. Using biocarbon in polymer composites is also interesting because of its relatively low specific weight that will result to lighter composite materials. In this Building Light project the SMEs Torrgas and NPSP will collaborate with and Avans/CoE BBE in a feasibility study on the use of biocarbon in a NPSP biocomposite. The physicochemical properties and moisture absorption of the composites with biocarbon filler will be compared to the biocomposite obtained with the currently used calcium carbonate filler. These novel biocarbon-biocomposites are anticipated to have higher stability and lighter weight, hence resulting to a new, exciting building materials that will create new business opportunities for both of the SME partners.