Dienst van SURF
© 2025 SURF
Hydrogen (H2) is a key element in the Dutch energy transition, considered a sources of flexibility to balance the variable renewable energy sources, facilitating its integration into the energy system. But also as an energy carrier. Both the gas and electricity transmission operators (TSO) have the vision to interconnect their networks with H2, by distributing the green H2 produced with offshore electrolysers into high pressure gas pipelines to relive the overload electric network. The planned compressed H2 pipelines cross the north of North-Holland region, offering a backbone for a H2 economy. Furthermore, at regional level there are already a big number of privet-public H2 developments, among them the DuWaAl, which is a H2 production-demand chain, consists of 1) An H2 mill, 2) 5 filling stations in the region and 3) a large fleet of trucks and other users. Because of these developments, the North-Holland region needs a better insight into the position that H2 could fulfil in the local energy system to contribute to the energy transition. The aim of this research is to analyse these H2 economy, from the emergent to settled, by identifying early and potential producer- consumer, considering the future infrastructure requirements, and exploring economy-environmental impacts of different supply paths
The intermittency of renewable energy technologies requires adequate storage technologies. Hydrogen systems consisting of electrolysers, storage tanks, and fuel cells can be implemented as well as batteries. The requirements of the hydrogen purification unit is missing from literature. We measured the same for a 4.5 kW PEM electrolyser to be 0.8 kW for 10 min.A simulation to hybridize the hydrogen system, including its purification unit, with lithium-ion batteries for energy storage is presented; the batteries also support the electrolyser. We simulated a scenario for operating a Dutch household off-electric-grid using solar and wind electricity to find the capacities and costs of the components of the system.Although the energy use of the purification unit is small, it influences the operation of the system, affecting the sizing of the components. The battery as a fast response efficient secondary storage system increases the ability of the electrolyser to start up.
In the course of the “energie transitie” hydrogen is likely to become a very important energy carrier. The production of hydrogen (and oxygen) by water electrolysis using electricity from sun or wind is the only sustainable option. Water electrolysis is a well-developed technique, however the production costs of hydrogen by electrolysis are still more expensive than the conventional (not sustainable) production by steam reforming. One challenge towards the large scale application of water electrolysis is the fabrication of stable and cheap (noble metal free) electrodes. In this project we propose to develop fabrication methods for working electrodes and membrane electrode stack (MEAs) that can be used to implement new (noble metal free) electrocatalysts in water electrolysers.
Production of hydrogen from renewable power sources requires dynamic operation of electrolysers. A dedicated research activity is proposed to explore and study the impact of variable operation on electrolyser performance and the electricity grid. In addition optimal control strategies will be developed with the goal to improve overall operational efficiency. It is expected that by applying advanced control strategies 2 to 3% operational efficiency gain can be achieved. The research proposed in this project is aimed to explore, validate and demonstrate this potential efficiency gain on the PEM unit.
Hydrohub beoogd een testomgeving voor electrolysers te ontwikkelen en realiseren in de proeftuin van EnTranCe. Projectdoel is om onderzoek te doen aan mid-size electrolysers om de ‘total cost of equipment’ te reduceren door kritisch te kijken en onderzoek te doen naar CAPEX- en OPEX vermindering, Verbetering van efficiency en behoud of verbetering van levenduur (of een positieve combinatie van deze factoren). In het eerste deel van het project (hydrohub-1) is e.e.a. ontworpen en gebouwd (utilities + infrastructuur bij EnTranCe + PEM-electrolser door TNO + Alkaline electrolyser door HyCC/Nobian/ISPT) Het project Hydrohub-II beoogt het ‘in bedrijfstellen van de systemen’ en het operationeel maken. Vervolgens het beoogde onderzoek uit te voeren.