Dienst van SURF
© 2025 SURF
An energy harvesting device for obtaining energy from drops without needing of moving the drops along the device, in a reduced scale and combinable with othertypes of harvesting devices, the energy harvesting device comprising one or more triboelectric generators comprising a bottom electrode, a friction or triboelectric element placed over the bottom electrode, and at least two top electrodes placed over the triboelectric element and defining at least one gap between them, exposing the triboelectric element to the external environment so that on contacting a drop of liquid makes an electrical connection between the top electrodes varying the capacitance of the triboelectric generators and alternatively for functioning as a power unit for a sensor or as a self-powered sensor producing an electrical signal generated by the contact of the liquid with the electrodes.
RationaleIn bioelectrical impedance analysis (BIA) measurements, one pair of electrodes is typically placed dorsal on the right hand (position A) and one pair on the foot. In patients with fragile skin, scars or wounds, this dorsal hand placement is not always possible. This study compares agreement of BIA measurements at seven alternative placements with position A. MethodsBIA measurements were performed with the Bodystat-500 using eight combinations of hand electrodes: at the dorsal side of the hand (position A) or dorsal side hand-forearm (position B and C); at the palmar side of the hand (position D) or palmar side hand-forearm (position E and F) or mixed palmar-dorsal side of the hand (position G and H). ICCs were used to compare alle outcomes to position A. Changes in fat mass ∆FM, fat-free mass ∆FFM and appendicular skeletal muscle mass ∆ASMM were calculated using Kyle’s formula.ResultsSeventy healthy Caucasian participants were measured: median age 22 years, IQR 21-23; mean BMI 22.8 ± 2.5 kg/m². Electrode positions D,G and H showed an ICC 0.99-1.00 for ∆FM, ∆FFM and ∆ASMM with minimal changes in ∆FFM and ∆FM: 0.1–0.4 kg ± 0.3 kg and ∆ASMM: 0.0–0.2 kg ± 0.2 kg. Measurements at position B, C, E, and F showed significant and clinically relevant differences with ∆FM and ∆FFM: 3.8–4.0 kg ± 1.1 kg and ∆ASMM: 2.0–2.1 kg ± 0.6 kg, with ICCs 0.96-0.97.ConclusionAlternatively to the typical electrode placement on the dorsal side of the hand, this study demonstrates that three alternative placements results in an excellent agreement with only minimal changes in FFM, FM and ASMM. In practice, placing electrodes at more proximal positions on the forearm should be avoided. Alternatively, we recommend a mixed or palmar electrode placement on the hand.
RationaleBij bio-elektrische impedantieanalyse (BIA)-metingen wordt doorgaans een paar elektroden dorsaal op de rechterhand geplaatst (positie A) en een paar op de voet. Bij patiënten met kwetsbare huid, littekens of wonden is deze dorsale handplaatsing niet altijd mogelijk. Deze studie vergelijkt de overeenstemming van BIA-metingen bij zeven alternatieve plaatsingen met positie A.MethodeBIA-metingen werden uitgevoerd met de Bodystat-500 met behulp van acht combinaties van handelektroden: op de dorsale zijde van de hand (positie A) of dorsale zijde hand-onderarm (positie B en C); op de palmaire zijde van de hand (positie D) of palmaire zijde hand-onderarm (positie E en F) of gemengd palmair-dorsale zijde van de hand (positie G en H). ICC's werden gebruikt om alle uitkomsten te vergelijken met positie A. Veranderingen in vetmassa ∆FM, vetvrije massa ∆FFM en appendiculaire skeletspiermassa ∆ASMM werden berekend met behulp van de formule van Kyle.ResultatenZeventig gezonde Kaukasische deelnemers werden gemeten: mediane leeftijd 22 jaar, IQR 21-23; gemiddelde BMI 22,8 ± 2,5 kg/m². Elektrodeposities D, G en H toonden een ICC van 0,99-1,00 voor ∆FM, ∆FFM en ∆ASMM, met minimale veranderingen in ∆FFM en ∆FM: 0,1–0,4 kg ± 0,3 kg en ∆ASMM: 0,0–0,2 kg ± 0,2 kg. Metingen op positie B, C, E en F toonden significante en klinisch relevante verschillen met ∆FM en ∆FFM: 3,8–4,0 kg ± 1,1 kg en ∆ASMM: 2,0–2,1 kg ± 0,6 kg, met ICC's van 0,96-0,97.ConclusieAls alternatief voor de typische elektrodeplaatsing op de dorsale zijde van de hand toont deze studie aan dat drie alternatieve plaatsingen uitstekende overeenstemming geven met slechts minimale veranderingen in FFM, FM en ASMM. In de praktijk dient het plaatsen van elektroden op meer proximale posities op de onderarm te worden vermeden. Alternatief bevelen we een gemengde of palmaire elektrodeplaatsing op de hand aan.
Size measurement plays an essential role for micro-/nanoparticle characterization and property evaluation. Due to high costs, complex operation or resolution limit, conventional characterization techniques cannot satisfy the growing demand of routine size measurements in various industry sectors and research departments, e.g., pharmaceuticals, nanomaterials and food industry etc. Together with start-up SeeNano and other partners, we will develop a portable compact device to measure particle size based on particle-impact electrochemical sensing technology. The main task in this project is to extend the measurement range for particles with diameters ranging from 20 nm to 20 um and to validate this technology with realistic samples from various application areas. In this project a new electrode chip will be designed and fabricated. It will result in a workable prototype including new UMEs (ultra-micro electrode), showing that particle sizing can be achieved on a compact portable device with full measuring range. Following experimental testing with calibrated particles, a reliable calibration model will be built up for full range measurement. In a further step, samples from partners or potential customers will be tested on the device to evaluate the application feasibility. The results will be validated by high-resolution and mainstream sizing techniques such as scanning electron microscopy (SEM), dynamic light scattering (DLS) and Coulter counter.
Dit project richt zich op het realiseren van de volgende generatie batterijen met hogere energiedichtheden, langere levensduur en veel betere veiligheid dan de huidige, noodzakelijk voor een samenleving gebaseerd op duurzame energiebronnen. Gebruikmakend van unieke Nederlandse expertise wordt het hart van deze begeerde batterijen – het electrode-elektrolyt grensvlak – onderzocht en verbeterd met schaalbare technologieën. Om de maatschappelijke integratie van deze technologische doorbraken te verwezenlijken, wordt de sociale en economische impact geëvalueerd in directe samenwerking met verschillende belanghebbenden.
Climate change is one of the most critical global challenges nowadays. Increasing atmospheric CO2 concentration brought by anthropogenic emissions has been recognized as the primary driver of global warming. Therefore, currently, there is a strong demand within the chemical and chemical technology industry for systems that can covert, capture and reuse/recover CO2. Few examples can be seen in the literature: Hamelers et al (2013) presented systems that can use CO2 aqueous solutions to produce energy using electrochemical cells with porous electrodes; Legrand et al (2018) has proven that CDI can be used to capture CO2 without solvents; Shu et al (2020) have used electrochemical systems to desorb (recover) CO2 from an alkaline absorbent with low energy demand. Even though many efforts have been done, there is still demand for efficient and market-ready systems, especially related to solvent-free CO2 capturing systems. This project intends to assess a relatively efficient technology, with low-energy costs which can change the CO2 capturing market. This technology is called whorlpipe. The whorlpipe, developed by Viktor Schauberger, has shown already promising results in reducing the energy and CO2 emissions for water pumping. Recently, studies conducted by Wetsus and NHL Stenden (under submission), in combination with different companies (also members in this proposal) have shown that vortices like systems, like the Schauberger funnel, and thus “whorlpipe”, can be fluid dynamically represented using Taylor-Couette flows. This means that such systems have a strong tendency to form vortices like fluid-patterns close to their air-water interface. Such flow system drastically increase advection. Combined with their higher area to volume ratio, which increases diffusion, these systems can greatly enhance gas capturing (in liquids), and are, thus, a unique opportunity for CO2 uptake from the air, i.e. competing with systems like conventional scrubbers or bubble-based aeration.