Background/Aims: Analogy learning, a motor learning strategy that uses biomechanical metaphors to chunk together explicit rules of a to-be-learned motor skill. This proof-of-concept study aims to establish the feasibility and potential benefits of analogy learning in enhancing stride length regulation in people with Parkinson’s. Methods: Walking performance of thirteen individuals with Parkinson’s was analysed using a Codamotion analysis system. An analogy instruction; “following footprints in the sand” was practiced over 8 walking trials. Single- and dual- (motor and cognitive) task conditions were measured before training, immediately after training and 4-weeks post training. Finally, an evaluation form was completed to examine the interventions feasibility. Findings: Data from 12 individuals (6 females and 6 males, mean age 70, Hoehn and Yahr I-III) were analysed, one person withdrew due to back problems. In the single task condition, statistically and clinically relevant improvements were obtained. A positive trend towards reducing dual task costs after the intervention was demonstrated, supporting the relatively implicit nature of the analogy. Participants reported that the analogy was simple to use and became easier over time. Conclusions: Analogy learning is a feasible and potentially implicit (i.e. reduced working memory demands) intervention to facilitate walking performance in people with Parkinson’s.
Background/Aims: Analogy learning, a motor learning strategy that uses biomechanical metaphors to chunk together explicit rules of a to-be-learned motor skill. This proof-of-concept study aims to establish the feasibility and potential benefits of analogy learning in enhancing stride length regulation in people with Parkinson’s. Methods: Walking performance of thirteen individuals with Parkinson’s was analysed using a Codamotion analysis system. An analogy instruction; “following footprints in the sand” was practiced over 8 walking trials. Single- and dual- (motor and cognitive) task conditions were measured before training, immediately after training and 4-weeks post training. Finally, an evaluation form was completed to examine the interventions feasibility. Findings: Data from 12 individuals (6 females and 6 males, mean age 70, Hoehn and Yahr I-III) were analysed, one person withdrew due to back problems. In the single task condition, statistically and clinically relevant improvements were obtained. A positive trend towards reducing dual task costs after the intervention was demonstrated, supporting the relatively implicit nature of the analogy. Participants reported that the analogy was simple to use and became easier over time. Conclusions: Analogy learning is a feasible and potentially implicit (i.e. reduced working memory demands) intervention to facilitate walking performance in people with Parkinson’s.
Rationale: Diagnosis of sarcopenia in older adults is essential for early treatment in clinical practice. Bio-electrical impedanceanalysis (BIA) may be a valid means to assess appendicular lean mass (ALM) in older adults, but limited evidence is available.Therefore, we aim to evaluate the validity of BIA to assess ALM in older adults.Methods: In 215 community dwelling older adults (age ≥ 55 years), ALM was measured by BIA (Tanita MC-780; 8-points) andcompared with dual-energy X-ray absorptiometry (DXA, Hologic Discovery A) as reference. Validity for assessing absolute values ofALM was evaluated by: 1) bias (mean difference), 2) percentage of accurate predictions (within 5% of DXA values), 3) individualerror (root mean squared error (RMSE), mean absolute deviation), 4) limits of agreement (Bland-Altman analysis). For diagnosis oflow ALM, the lowest quintile of ALM by DXA was used (below 21.4 kg for males and 15.4 for females). Sensitivity and specificityof detecting low ALM by BIA were assessed.Results: Mean age of the subjects was 71.9 ± 6.4, with a BMI of 25.8 ± 4.2 kg/m2, and 70% were females. BIA slightlyunderestimated ALM compared to DXA with a mean bias of -0.6 ± 0.2 kg. The percentage accurate predictions was 54% withRMSE 1.6 kg and limits of agreements -3.0 – +1.8 kg. Sensitivity was 79%, indicating that 79% of subjects with low ALMaccording to DXA also had low ALM with the BIA. Specificity was 90%, indicating that 90% of subjects with ‘no low’ ALMaccording to DXA also had ‘no low’ ALM with the BIA.Conclusions: This comparison showed a poor validity of BIA to assess absolute values of ALM, but a reasonable sensitivity andspecificity to diagnose a low level of ALM in community-dwelling older adults in clinical practice.