Dienst van SURF
© 2025 SURF
As in many other countries worldwide, the coronavirus pandemic prompted the implementation of an “intelligent lockdown” in the spring of 2020 in the Netherlands, including the closure of nightlife venues and cancellation of festivals. Such restrictions and social distancing could particularly affect people who use alcohol or other drugs in recreational settings and give rise to new challenges and additional needs in the field of addiction prevention and care. To monitor changes in substance use and provide services with practical directions for tailored prevention, an anonymous web survey was set up, targeting a convenience sample aged 16 years or older through various social media and other online channels. Between May and October 2020, a total of 6,070 participants completed the survey, mainly adolescents and young adults (16–24 years old). These data were used to explore and describe changing patterns in substance use. Overall results showed declined current use compared to “pre-corona,” but mask underlying variation in changing patterns, including discontinued (tobacco 10.4%, alcohol 11.3%, cannabis 16.3%, other drugs 30.4%), decreased (tobacco 23.0%, alcohol 29.1%, cannabis 17.4%, other drugs 20.7%), unchanged (tobacco 30.3%, alcohol 21.2%, cannabis 22.3%, other drugs 17.3%), increased (tobacco 29.6%, alcohol 32.1%, cannabis 32.9%, other drugs 25.3%), and (re)commenced use (tobacco 6.7%, alcohol 6.3%, cannabis 11.1%, other drugs 6.2%). Especially the use of drugs like ecstasy and nitrous oxide was discontinued or decreased due to the lack of social occasions for use. Increased use was associated with coping motives for all substance types. As measures combatting the coronavirus may need to be practiced for some time to come, possibly leading to prolonged changes in substance use with lingering “post-corona” consequences, timely and ongoing monitoring of changing patterns of substance use is vital for informing prevention services within this field.
MULTIFILE
Furosemide is included in the World Anti-Doping Agency’s (WADA) list of prohibited substances because it can be used by athletes to mask the presence of performance-enhancing drugs in urine and/or excrete water for rapid weight loss. But how effective is furosemide in masking prohibited substances in urine? Based on the pharmacology and the available literature, we conclude that the masking effect of furosemide is limited. Furosemide is a doping agent that is mainly relevant for sports with weight categories. Conflict of interest and financial support: none declared.
LINK
Drug consumption estimates are of relevance because of public health effects as well as associated criminal activities. Wastewater analysis of drug residues enables the estimation of drug consumption and drug markets. Short-term and long-term trends of cocaine, MDMA (ecstasy), amphetamine (speed) and methamphetamine (crystal meth), were studied for the city of Amsterdam. MDMA (+41%) and cocaine (+26%) showed significantly higher weekend vs. week consumption, while no differences were observed for the other drugs. The consumption of MDMA, cocaine, amphetamine and methamphetamine significantly increased between 2011 and 2019. Weekly trends emerging from wastewater analyses were supported by qualitative and quantitative data from a recreational drug use monitoring scheme. However, information collected in panel interviews within nightlife networks and surveys among visitors of pubs, clubs and festivals only partially reflected the long term increase in consumption as registered from wastewater analysis. Furthermore, methamphetamine use was not well presented in survey data, panel studies and test service samples, but could be monitored trough wastewater analysis. This illustrates that wastewater analysis can function as an early warning if use and user groups are small or difficult to reach trough other forms of research. All in all, this study illustrates that wastewater-based epidemiology is complementary to research among user groups, and vice versa. These different types of information enable to connect observed trends in total drug consumption to behaviour of users and the social context in which the use takes place as well as validate qualitative signals about (increased) consumption of psychoactive substances. Such a multi angular approach to map the illicit drug situation on local or regional scale can provide valuable information for public health.
MULTIFILE
Genematics aims to help life science researchers and medical specialists to discover, interpret and communicate valuable patterns in biological data. Our software combines the recovery of data from public scientific resources with instant interpretation. It does so in such a way that the expert only needs a few seconds instead of hours or even days to retrieve answers from the available biological data. Use of our software should accelerate the research for new drugs, new treatments and other innovations in health-related research to build a better tomorrow.
Biotherapeutic medicines such as peptides, recombinant proteins, and monoclonal antibodies have successfully entered the market for treating or providing protection against chronic and life-threatening diseases. The number of relevant commercial products is rapidly increasing. Due to degradation in the gastro-intestinal tract, protein-based drugs cannot be taken orally but need to be administered via alternative routes. The parenteral injection is still the most widely applied administration route but therapy compliance of injection-based pharmacotherapies is a concern. Long-acting injectable (LAI) sustained release dosage forms such as microparticles allow less frequent injection to maintain plasma levels within their therapeutic window. Spider Silk Protein and Poly Lactic-co-Glycolic Acid (PLGA) have been attractive candidates to fabricate devices for drug delivery applications. However, conventional microencapsulation processes to manufacture microparticles encounter drawbacks such as protein activity loss, unacceptable residual organic solvents, complex processing, and difficult scale-up. Supercritical fluids (SCF), such as supercritical carbon dioxide (scCO2), have been used to produce protein-loaded microparticles and is advantageous over conventional methods regarding adjustable fluid properties, mild operating conditions, interfacial tensionless, cheap, non-toxicity, easy downstream processing and environment-friendly. Supercritical microfluidics (SCMF) depict the idea to combine strengths of process scale reduction with unique properties of SCF. Concerning the development of long-acting microparticles for biological therapeutics, SCMF processing offers several benefits over conventionally larger-scale systems such as enhanced control on fluid flow and other critical processing parameters such as pressure and temperature, easy modulation of product properties (such as particle size, morphology, and composition), cheaper equipment build-up, and convenient parallelization for high-throughput production. The objective of this project is to develop a mild microfluidic scCO2 based process for the production of long-acting injectable protein-loaded microparticles with, for example, Spider Silk Protein or PLGA as the encapsulating materials, and to evaluate the techno-economic potential of such SCMF technology for practical & industrial production.
Biotherapeutic medicines such as peptides, recombinant proteins, and monoclonal antibodies have successfully entered the market for treating or providing protection against chronic and life-threatening diseases. The number of relevant commercial products is rapidly increasing. Due to degradation in the gastro-intestinal tract, protein-based drugs cannot be taken orally but need to be administered via alternative routes. The parenteral injection is still the most widely applied administration route but therapy compliance of injection-based pharmacotherapies is a concern. Long-acting injectable (LAI) sustained release dosage forms such as microparticles allow less frequent injection to maintain plasma levels within their therapeutic window. Spider Silk Protein and Poly Lactic-co-Glycolic Acid (PLGA) have been attractive candidates to fabricate devices for drug delivery applications. However, conventional microencapsulation processes to manufacture microparticles encounter drawbacks such as protein activity loss, unacceptable residual organic solvents, complex processing, and difficult scale-up. Supercritical fluids (SCF), such as supercritical carbon dioxide (scCO2), have been used to produce protein-loaded microparticles and is advantageous over conventional methods regarding adjustable fluid properties, mild operating conditions, interfacial tensionless, cheap, non-toxicity, easy downstream processing and environment-friendly. Supercritical microfluidics (SCMF) depict the idea to combine strengths of process scale reduction with unique properties of SCF. Concerning the development of long-acting microparticles for biological therapeutics, SCMF processing offers several benefits over conventionally larger-scale systems such as enhanced control on fluid flow and other critical processing parameters such as pressure and temperature, easy modulation of product properties (such as particle size, morphology, and composition), cheaper equipment build-up, and convenient parallelization for high-throughput production. The objective of this project is to develop a mild microfluidic scCO2 based process for the production of long-acting injectable protein-loaded microparticles with, for example, Spider Silk Protein or PLGA as the encapsulating materials, and to evaluate the techno-economic potential of such SCMF technology for practical & industrial production.