Dienst van SURF
© 2025 SURF
Chronic sorrow involves parents’ enduring grief due to their child’s disability. This stems not only from the recurring painful reality parents face, which differs from the life they had hoped for their children, families, and themselves but from also being confronted with societal and personal norms and expectations they cannot meet. There is a lack of research on the lived experiences of parents’ chronic sorrow. An Interpretative Phenomenological Analysis (IPA) study involving six parents with severely disabled children explored what it is like for parents to confront being ‘‘different.’’ Besides sorrow, the parents experienced intense ambiguity,guilt, and uncertainty while navigating societal expectations and their own perceptions of their children. Their ideas of parenthood and their self-identity as parents proved central to their strategies. This study provides insight into the intricacies of this particular aspect of chronic sorrow in parents, with relevance for research and practice.
To date, it is unknown whether waist circumference can be measured validly and reliably when a subject is in a supine position. This issue is relevant when international standards for healthy participants are applied to persons with severe intellectual, sensory, and motor disabilities. Thus, the aims of our study were (1) to determine the validity of waist circumference measurements obtained in a supine position, (2) to formulate an equation that predicts standing waist circumference from measurements obtained in a supine position, and (3) to determine the reliability of measuring waist circumference in persons with severe intellectual, sensory, and motor disabilities. First, we performed a validity study in 160 healthy participants, in which we compared waist circumference obtained in standing and supine positions. We also conducted a test-retest study in 43 participants with severe intellectual, sensory, and motor disabilities, in which we measured the waist circumference with participants in the supine position. Validity was assessed with paired t-test and Wilcoxon signed rank test. A prediction equation was estimated with multiple regression analysis. Reliability was assessed by Wilcoxon signed rank test, limits of agreement (LOA), and intraclass correlation coefficients (ICC). Paired t-test and Wilcoxon signed rank test revealed significant differences between standing and supine waist circumference measurements. We formulated an equation to predict waist circumference (R(2)=0.964, p<0.001). There were no significant differences between test and retest waist circumference values in disabled participants (p=0.208; Wilcoxon signed rank test). The LOA was 6.36 cm, indicating a considerable natural variation at the individual level. ICC was .98 (p<0.001). We found that the validity of supine waist circumference is biased towards higher values (1.5 cm) of standing waist circumference. However, standing waist circumference can be predicted from supine measurements using a simple prediction equation. This equation allows the comparison of supine measurements of disabled persons with the international standards. Supine waist circumference can be reliably measured in participants with severe intellectual, sensory, and motor disabilities.
The Sport Empowers Disabled Youth 2 (SEDY2) project encourages inclusion and equal opportunities in sport for youth with a disability by raising their sports and exercise participation in inclusive settings. It was important to ensure that the authentic views, wishes and feelings of youth with a disability regarding inclusion in sport were attained. Therefore, online focus groups were conducted with youth with a disability, their parents and sport professionals in Finland, Lithuania, Portugal and The Netherlands. During the online EUCAPA 2020 conference the preliminary results of these focus groups were presented.
Horse riding falls under the “Sport for Life” disciplines, where a long-term equestrian development can provide a clear pathway of developmental stages to help individuals, inclusive of those with a disability, to pursue their goals in sport and physical activity, providing long-term health benefits. However, the biomechanical interaction between horse and (disabled) rider is not wholly understood, leaving challenges and opportunities for the horse riding sport. Therefore, the purpose of this KIEM project is to start an interdisciplinary collaboration between parties interested in integrating existing knowledge on horse and (disabled) rider interaction with any novel insights to be gained from analysing recently collected sensor data using the EquiMoves™ system. EquiMoves is based on the state-of-the-art inertial- and orientational-sensor system ProMove-mini from Inertia Technology B.V., a partner in this proposal. On the basis of analysing previously collected data, machine learning algorithms will be selected for implementation in existing or modified EquiMoves sensor hardware and software solutions. Target applications and follow-ups include: - Improving horse and (disabled) rider interaction for riders of all skill levels; - Objective evidence-based classification system for competitive grading of disabled riders in Para Dressage events; - Identifying biomechanical irregularities for detecting and/or preventing injuries of horses. Topic-wise, the project is connected to “Smart Technologies and Materials”, “High Tech Systems & Materials” and “Digital key technologies”. The core consortium of Saxion University of Applied Sciences, Rosmark Consultancy and Inertia Technology will receive feedback to project progress and outcomes from a panel of international experts (Utrecht University, Sport Horse Health Plan, University of Central Lancashire, Swedish University of Agricultural Sciences), combining a strong mix of expertise on horse and rider biomechanics, veterinary medicine, sensor hardware, data analysis and AI/machine learning algorithm development and implementation, all together presenting a solid collaborative base for derived RAAK-mkb, -publiek and/or -PRO follow-up projects.
Along with the rapidly growing number of disabled people participating in competitive sports, there is an increased need for (para)medical support in disability sports. Disabled athletes experience differences in body composition, metabolism, training load and habitual activity patterns compared with non-disabled athletes. Moreover, it has been suggested that the well-recognized athlete triad, and low energy availability and low bone mineral density in particular, is even a greater challenge in disabled athletes. Therefore, it is not surprising that sport nutritionists of disabled athletes have expressed an urgency for increased knowledge and insights on the nutritional demands of this group. This project aims to investigate energy expenditure, dietary intake, body composition and bone health of disabled athletes, ultimately leading to nutritional guidelines that promote health and optimal sports performance for this unique population. For this purpose, we will conduct a series of studies and implementation activities that are inter-related and build on the latest insights from sports practice, technology and science. Our international consortium is highly qualified to achieve this goal. It consists of knowledge institutes including world-leading experts in sport and nutrition research, complemented with practical insights from nutritionists working with disabled athletes and the involvement of athletes and teams through the Dutch and Norwegian Olympic committees. The international collaboration, which is a clear strength of this project, is not only focused on research, but also on the optimization of professional practice and educational activities. In this regard, the outcomes of this project will be directly available for practical use by the (para)medical staff working with disabled athletes, and will be extensively communicated to sport teams to ensure that the new insights are directly embedded into daily practice. The project outcomes will also be incorporated in educational activities for dietetics and sport and exercise students, thereby increasing knowledge of future practitioners.
Along with the rapidly growing number of disabled people participating in competitive sports, there is an increased need for (para)medical support in disability sports. Disabled athletes experience differences in body composition, metabolism, training load and habitual activity patterns compared with non-disabled athletes. Moreover, it has been suggested that the well-recognized athlete triad, and low energy availability and low bone mineral density in particular, is even a greater challenge in disabled athletes. Therefore, it is not surprising that sport nutritionists of disabled athletes have expressed an urgency for increased knowledge and insights on the nutritional demands of this group. This project aims to investigate energy expenditure, dietary intake, body composition and bone health of disabled athletes, ultimately leading to nutritional guidelines that promote health and optimal sports performance for this unique population. For this purpose, we will conduct a series of studies and implementation activities that are inter-related and build on the latest insights from sports practice, technology and science. Our international consortium is highly qualified to achieve this goal. It consists of knowledge institutes including world-leading experts in sport and nutrition research, complemented with practical insights from nutritionists working with disabled athletes and the involvement of athletes and teams through the Dutch and Norwegian Olympic committees. The international collaboration, which is a clear strength of this project, is not only focused on research, but also on the optimization of professional practice and educational activities. In this regard, the outcomes of this project will be directly available for practical use by the (para)medical staff working with disabled athletes, and will be extensively communicated to sport teams to ensure that the new insights are directly embedded into daily practice. The project outcomes will also be incorporated in educational activities for dietetics and sport and exercise students, thereby increasing knowledge of future practitioners.