Technological developments go fast and are interrelated and multi-interpretable. As consumer needs change, the technological possibilities to meet those needs are constantly evolving and new technology providers introduce new disruptive business models. This makes it difficult to predict what the world of tomorrow will look like for an organization and that makes the risks for organizations substantial. In this context, it is difficult for organizations to determine what constitutes a good strategy to adopt digital developments. This paper describes a first step of a study with the objective to design a method for organizations to formulate a future-proof strategy in a rapidly changing, complex and ambiguous context. More specifically, this paper describes the results of a sequence of three focus groups that were held with a group of eight experts, with extensive experience as members of the decision making unit in organizations. The objectives of these sessions were to determine possible solutions for the outlined challenge in order to provide direction for continuation and scoping of the following research phases.
MULTIFILE
Technological developments go fast and are interrelated and multi-interpretable. As consumer needs change, the technological possibilities to meet those needs are constantly evolving and new technology providers introduce new disruptive business models. This makes it difficult to predict what the world of tomorrow will look like for an organization and that makes the risks for organizations substantial. In this context, it is difficult for organizations to determine what constitutes a good strategy to adopt digital developments. This paper describes a first step of a study with the objective to design a method for organizations to formulate a future-proof strategy in a rapidly changing, complex and ambiguous context. More specifically, this paper describes the results of a sequence of three focus groups that were held with a group of eight experts, with extensive experience as members of the decision making unit in organizations. The objectives of these sessions were to determine possible solutions for the outlined challenge in order to provide direction for continuation and scoping of the following research phases.
MULTIFILE
Wheelchair users with a spinal cord injury (SCI) or amputation generally lead an inactive lifestyle, associated with reduced fitness and health. Digital interventions and sport and lifestyle applications (E-platforms) may be helpful in achieving a healthy lifestyle. Despite the potential positive effects of E-platforms in the general population, no studies are known investigating the effects for wheelchair users and existing E-platforms can not be used to the same extent and in the same manner by this population due to differences in physiology, body composition, exercise forms and responses, and risk injury. It is, therefore, our aim to adapt an existing E-platform (Virtuagym) within this project by using existing data collections and new data to be collected within the project. To reach this aim we intend to make several relevant databases from our network available for analysis, combine and reanalyze these existing databases to adapt the existing E-platform enabling wheelchair users to use it, evaluate and improve the use of the adapted E-platform, evaluate changes in healthy active lifestyle parameters, fitness, health and quality of life in users of the E-platform (both wheelchair users and general population) and identify determinants of these changes, identify factors affecting transitions from an inactive lifestyle, through an intermediate level, to an athlete level, comparing wheelchair users with the general population, and comparing Dutch with Brazilian individuals. The analysis of large datasets of exercise and fitness data from various types of individuals with and without disabilities, collected over the last years both in the Netherlands and Brazil, is an innovative and potentially fruitful approach. It is expected that the comparison of e.g. wheelchair users in Amsterdam vs. Sao Paulo or recreative athletes vs. elite athletes provides new insight in the factors determining a healthy and active lifestyle.
Wheelchair users with a spinal cord injury (SCI) or amputation generally lead an inactive lifestyle, associated with reduced fitness and health. Digital interventions and sport and lifestyle applications (E-platforms) may be helpful in achieving a healthy lifestyle. Despite the potential positive effects of E-platforms in the general population, no studies are known investigating the effects for wheelchair users and existing E-platforms can not be used to the same extent and in the same manner by this population due to differences in physiology, body composition, exercise forms and responses, and risk injury. It is, therefore, our aim to adapt an existing E-platform (Virtuagym) within this project by using existing data collections and new data to be collected within the project. To reach this aim we intend to make several relevant databases from our network available for analysis, combine and reanalyze these existing databases to adapt the existing E-platform enabling wheelchair users to use it, evaluate and improve the use of the adapted E-platform, evaluate changes in healthy active lifestyle parameters, fitness, health and quality of life in users of the E-platform (both wheelchair users and general population) and identify determinants of these changes, identify factors affecting transitions from an inactive lifestyle, through an intermediate level, to an athlete level, comparing wheelchair users with the general population, and comparing Dutch with Brazilian individuals. The analysis of large datasets of exercise and fitness data from various types of individuals with and without disabilities, collected over the last years both in the Netherlands and Brazil, is an innovative and potentially fruitful approach. It is expected that the comparison of e.g. wheelchair users in Amsterdam vs. Sao Paulo or recreative athletes vs. elite athletes provides new insight in the factors determining a healthy and active lifestyle.
This research is a collaborative project between Water Future, Looop, and MNEXT to address the valorisation of a residual stream that remain after valorisation of whey towards food and feed applications: whey permeate. This permeate is a high-volume but low-quality stream, which is currently used as a filler for mainly animal feed, but with the large amounts produced in NW-Europe it is essential to valorise whey permeate higher in the value chain, for example into a biobased resource which replace fossil-based resources in the chemical industry. To accomplish this, pre-processing steps are necessary to remove minerals. Electrodialysis (ED) can remove unwanted minerals from whey permeate by applying an electric field across its membranes. Using ED, whey permeate is expected to demineralize into a liquid which is suitable for application as biobased resource for various applications. Moreover, the extracted mineral stream can also be reused. This one-year project aims to quantify and optimize the demineralisation of whey permeates using a lab-scale ED setup to make the whey permeate stream suitable for re-use and thus reduce the environmental impact of this stream. The project involves setting up an ED setup provided by Water Future to treat whey permeates supplied by Looop, assessing the suitability of treated permeate as a biobased resource in the chemical industry and processing the produced mineral streams into new biobased resources. The result of this research will demonstrate the use of ED as a valorisation technique for whey permeates and the integration of multiple processes into a valorisation pathway to transform costly whey permeates into value-added products. MNEXT leads the research development, aiming to potentially establish a recycle strategy for resource recovery in the dairy industry. The results will be presented through educational activities, reports, digital platforms, and conferences to transfer knowledge to a broader audience.