Dienst van SURF
© 2025 SURF
Fashion design has rapidly become a digital process where textiles are simulated as soft, conformable materials on a digital body. The embodied experience and physical interaction with the textile have been replaced by screen-based media, resulting in a gap in understanding between physical and digital textile material. Consequently, understanding digitized textile properties and characteristics has become challenging for practitioners. This research investigates fashion designers’ implicit understanding when selecting textiles, specifically how interactions with physical textiles influence design considerations. Twenty digital fashion designers interacted with ten physical textile materials via tangible and scientific drape measurements, reflecting upon their design considerations. In digital environments, a tangible understanding of material properties is vital, and scientific drape measurements add significant understanding to digital design. The research advances our understanding of integrating digital tools in textile and soft material practices, where a postphenomenological approach is employed to help formulate the design considerations in selecting materials.
Office well-being aims to explore and support a healthy, balanced and active work style in office environments. Recent work on tangible user interfaces has started to explore the role of physical, tangible interfaces as active interventions to explore how to tackle problems such as inactive work and lifestyles, and increasingly sedentary behaviours. We identify a fragmented research landscape on tangible Office well-being interventions, missing the relationship between interventions, data, design strategies, and outcomes, and behaviour change techniques. Based on the analysis of 40 papers, we identify 7 classifications in tangible Office well-being interventions and analyse the intervention based on their role and foundation in behaviour change. Based on the analysis, we present design considerations for the development of future tangible Office well-being design interventions and present an overview of the current field and future research into tangible Office well-being interventions to design for a healthier and active office environment.
This study focuses on the school–work connection from the perspective of curriculum design. The aim was to uncover considerations underpinning the design of learning environments in vocational education. The research took place in the Netherlands. A focus group methodology was chosen to elicit designers’ considerations, which generally remain largely implicit. These considerations concern the designable elements of learning environments: epistemic, spatial, temporal, and social elements. Design considerations were uncovered at each of the aggregation levels of a curriculum. At the macro-level, considerations referred to the connectivity between the contexts of school and work. Based on these considerations, different designs were chosen along the school–work continuum. At the meso-level, another continuum was found: the complexity in terms of practices involved in the learning environment. At the micro-level, concrete design considerations were revealed that designers take into account to strengthen the school–work connection. Thus, design considerations at three levels were made explicit. Moreover, the need for alignment between the designable elements and the curriculum levels became more apparent, leading to a deeper understanding of curriculum design for vocational education. This paper adds understanding of ways to strengthen the school–work connection and design future-proof vocational curricula.
LINK
Our world is changing rapidly as a result of societal and technological developments that create new opportunities and challenges. Extended Realities (XR) could provide solutions for the problems the world is facing. In this project we apply these novel solutions in food and hospitality. It aims to tackle fundamental questions on how to stimulate a healthy and vital society that is based on a sustainable and innovative economy. This project aims to answer the question: How can Extended Reality (XR) technologies be integrated in the design of immersive food experiences to stimulate sustainable consumption behavior? A multidisciplinary approach, that has demonstrated its strength in the creative industry, will be applied in the hospitality and food sector. The project investigates implications and design considerations for immersion through XR technology that can stimulate sustainable consumption behavior. Based on XR prototypes, physiological data will be collected using biometric measuring devices in combination with self-reports. The effect of stimuli on sustainable consumption behavior during the immersive experience will be tested to introduce XR implementations that can motivate long-term behavioral change in food consumption. The results of the project contribute towards developing innovations in the hospitality sector that can tackle global societal challenges by exploiting the impact of new technology and understanding of consumer behavior to promote a healthy lifestyle and economy. Next to academic publications and conference contributions, the project will develop a handbook for hospitality professionals. It will outline steps and design criteria for the implementation of XR technologies to create immersive experiences that can stimulate sustainable consumption behavior. The knowledge generated in the project will contribute to the development of the curriculum at the Academy for Hotel and Facility at Breda University of Applied Sciences by introducing a technology-driven experience design approach for the course Sustainable Strategic Business Design.
With the help of sensors that made data collection and processing possible, many products around us have become “smarter”. The situation that our car, refrigerator, or umbrella communicating with us and each other is no longer a future scenario; it is increasingly a shared reality. There are good examples of such connectedness such as lifestyle monitoring of elderly persons or waste management in a smart city. Yet, many other smart products are designed just for the sake of embedding a chip in something without thinking through what kind of value they add everyday life. In other words, the design of these systems have mainly been driven by technology until now and little studies have been carried out on how the design of such systems helps citizens to improve or maintain the quality of their individual and collective lives. The CREATE-IT research center creates new solutions and methodologies in “digital design” that contribute to the quality of life of citizens. Correspondingly, this proposal focuses on one type of digital design—smart products—and investigate the concept of empowerment in relation to the design of smart products. In particular, the proposal aims to develop a model with its supplementary tools and methods for designing such products better. By following a research-through-design methodology, the proposal intends to offer a critical understanding on designing smart products. Along with its theoretical contribution, the proposal will also aid the students of ICT and design, and professionals such as designers and engineers to create smart products that will empower people and the industry to develop products grounded in a clear user experience and business model.
De robotassistent is een nieuwe, veelbelovende technologie om docenten in het primair onderwijs te ondersteunen en leerprestaties te verbeteren. In dit onderzoek ontwikkelen we een morele theorie voor het inzetten van deze robotassistenten in het onderwijs.Doel Met dit onderzoek ontwikkelen we een theorie over het moreel verantwoord inzetten van robotassistenten in het onderwijs, waarbij kwalitatieve en kwantitatieve data wordt gecombineerd. Resultaten Dit onderzoek loopt. Hieronder vind je een overzicht van de resultaten tot nu toe. Smakman, M. (2019) De robotdocent komt eraan, maar hoe? AG Connect. Januari/ Februari 2019. pp 70-73 Smakman, M., & Konijn, E. (2019). Robot Tutors: Welcome or Ethically Questionable? In M. Merdan, W. Lepuschitz, G. Koppensteiner, R. Balogh, & D. Obdržálek (Eds.), Robotics in Education ‐ Current Research and Innovations. Vienna, Austria: Springer. [in press] Smakman, M. and Konijn, E.A. (2019-02-07) Onderwijsrobots: van harte welkom of ethisch onverantwoord? Presented at Robots en AI in het onderwijs. Den Haag, The Netherlands. Smakman, M. And Konijn, E.A. (2019-01-31) Moral challenges and opportunities for educational robots Presented at Workshop How do we work with educational robots? De Waag, Amsterdam, The Netherlands. Goudzwaard, M., Smakman, M., Konijn, E.A. Robots are Good for Profit: A Business Perspective on Robots in Education. [accepted] to 9th Joint IEEE International Conference on Development and Learning and on Epigenetic Robotics Smakman, M., Konijn, E.A. (2019, February) Moral Considerations Regarding Robots in Education: A Systematic Literature Review. Paper presented at Etmaal van de Communicatiewetenschap, 7-8 February 2019. Nijmegen, The Netherlands Smakman, M., Konijn. E.A. (2018, December) Considerations on moral values regarding robot tutors. Presented at the Symposium on Robots for Language Learning. 12-13 December 2018. Koç University, Istanbul, Turkey Smakman, M. (2018, February). Moral concerns regarding robot tutors, a review.Poster presented at the ATEE 2018 Winter Conference – Technology and Innovative Learning, Utrecht, The Netherlands. Looptijd 01 januari 2017 - 01 januari 2022 Aanpak Dit onderzoek maakt gebruik van de Value Sensitive Design (VSD) methodology. VSD is een methode om rekening te houden met morele waarden tijdens het ontwerpen en inzetten van technologie. Eerst richt dit onderzoek op het benoemen van relevante (morele) waarden. Door verschillende focusgroepen met onder meer ouders, leraren, overheid en robotbouwers, worden de waarden verder uitgewerkt. Vervolgens wegen we de waarden door ze voor te leggen aan diverse groepen. Daarna stellen we richtlijnen op hoe robots op een verantwoorde manier kunnen worden ingezet.