Dienst van SURF
© 2025 SURF
In case of a major cyber incident, organizations usually rely on external providers of Cyber Incident Response (CIR) services. CIR consultants operate in a dynamic and constantly changing environment in which they must actively engage in information management and problem solving while adapting to complex circumstances. In this challenging environment CIR consultants need to make critical decisions about what to advise clients that are impacted by a major cyber incident. Despite its relevance, CIR decision making is an understudied topic. The objective of this preliminary investigation is therefore to understand what decision-making strategies experienced CIR consultants use during challenging incidents and to offer suggestions for training and decision-aiding. A general understanding of operational decision making under pressure, uncertainty, and high stakes was established by reviewing the body of knowledge known as Naturalistic Decision Making (NDM). The general conclusion of NDM research is that experts usually make adequate decisions based on (fast) recognition of the situation and applying the most obvious (default) response pattern that has worked in similar situations in the past. In exceptional situations, however, this way of recognition-primed decision-making results in suboptimal decisions as experts are likely to miss conflicting cues once the situation is quickly recognized under pressure. Understanding the default response pattern and the rare occasions in which this response pattern could be ineffective is therefore key for improving and aiding cyber incident response decision making. Therefore, we interviewed six experienced CIR consultants and used the critical decision method (CDM) to learn how they made decisions under challenging conditions. The main conclusion is that the default response pattern for CIR consultants during cyber breaches is to reduce uncertainty as much as possible by gathering and investigating data and thus delay decision making about eradication until the investigation is completed. According to the respondents, this strategy usually works well and provides the most assurance that the threat actor can be completely removed from the network. However, the majority of respondents could recall at least one case in which this strategy (in hindsight) resulted in unnecessary theft of data or damage. Interestingly, this finding is strikingly different from other operational decision-making domains such as the military, police and fire service in which there is a general tendency to act rapidly instead of searching for more information. The main advice is that training and decision aiding of (novice) cyber incident responders should be aimed at the following: (a) make cyber incident responders aware of how recognition-primed decision making works; (b) discuss the default response strategy that typically works well in several scenarios; (c) explain the exception and how the exception can be recognized; (d) provide alternative response strategies that work better in exceptional situations.
The hospitality industry, comprising diverse Small and Medium Enterprises (SMEs) such as restaurants, hotels, and catering facilities plays an important role in local and regional communities by providing employment opportunities, facilitating the organization of community events, and supporting local social activities and sports teams (Panteia, 2023). The hospitality industry thereby represents a major source of income in Europe, but also a commensurate burden on the environment because of its relatively high usage of water and energy consumption, and food waste, leading to the formulation of several initiatives to increase the sustainability of hotels, restaurants, and resorts, such as farm to fork and towel reuse (Bux & Amicarelli, 2023). Another avenue for hospitality organizations to make progress towards sustainability goals is through circular economy strategies (Bux & Amicarelli, 2023) based on the creation of small regenerative loops that require the involvement of multiple stakeholders (Tomassini & Cavagnaro, 2022). Nevertheless, hospitality operators need to track their progress towards sustainability goals while keep sight of their financial goals (Bux & Amicarelli, 2023), requiring a data-driven decision-making approach to sustainability and circularity. Big data analytics have therefore been identified as an enabler of the circular economy paradigm by reducing uncertainty and allowing organizations to predict results (Awan et al., 2021; Gupta et al., 2019). Hospitality organizations however remain behind in leveraging data analytics for decisionmaking (Mariani & Baggio, 2022). The purpose of the study is therefore to examine how hospitality organizations can leverage data analytics to make data-driven decisions regarding circularity. Using a multiple case study approach of three Dutch hospitality SMEs, enablers and inhibitors of data analytics for datadriven decisions regarding circularity are examined. This addresses the call by Tomassini and Cavagnaro (2022) for more exploration of the circularity paradigm in hospitality. Despite the ongoing interest in increasing the sustainability of the hospitality industry (European Commission, 2013), relatively little attention has been paid to the development of circularity strategies and what is needed to implement them.
During the past two decades the implementation and adoption of information technology has rapidly increased. As a consequence the way businesses operate has changed dramatically. For example, the amount of data has grown exponentially. Companies are looking for ways to use this data to add value to their business. This has implications for the manner in which (financial) governance needs to be organized. The main purpose of this study is to obtain insight in the changing role of controllers in order to add value to the business by means of data analytics. To answer the research question a literature study was performed to establish a theoretical foundation concerning data analytics and its potential use. Second, nineteen interviews were conducted with controllers, data scientists and academics in the financial domain. Thirdly, a focus group with experts was organized in which additional data were gathered. Based on the literature study and the participants responses it is clear that the challenge of the data explosion consist of converting data into information, knowledge and meaningful insights to support decision-making processes. Performing data analyses enables the controller to support rational decision making to complement the intuitive decision making by (senior) management. In this way, the controller has the opportunity to be in the lead of the information provision within an organization. However, controllers need to have more advanced data science and statistic competences to be able to provide management with effective analysis. Specifically, we found that an important skill regarding statistics is the visualization and communication of statistical analysis. This is needed for controllers in order to grow in their role as business partner..
The IMPULS-2020 project DIGIREAL (BUas, 2021) aims to significantly strengthen BUAS’ Research and Development (R&D) on Digital Realities for the benefit of innovation in our sectoral industries. The project will furthermore help BUas to position itself in the emerging innovation ecosystems on Human Interaction, AI and Interactive Technologies. The pandemic has had a tremendous negative impact on BUas industrial sectors of research: Tourism, Leisure and Events, Hospitality and Facility, Built Environment and Logistics. Our partner industries are in great need of innovative responses to the crises. Data, AI combined with Interactive and Immersive Technologies (Games, VR/AR) can provide a partial solution, in line with the key-enabling technologies of the Smart Industry agenda. DIGIREAL builds upon our well-established expertise and capacity in entertainment and serious games and digital media (VR/AR). It furthermore strengthens our initial plans to venture into Data and Applied AI. Digital Realities offer great opportunities for sectoral industry research and innovation, such as experience measurement in Leisure and Hospitality, data-driven decision-making for (sustainable) tourism, geo-data simulations for Logistics and Digital Twins for Spatial Planning. Although BUas already has successful R&D projects in these areas, the synergy can and should significantly be improved. We propose a coherent one-year Impuls funded package to develop (in 2021): 1. A multi-year R&D program on Digital Realities, that leads to, 2. Strategic R&D proposals, in particular a SPRONG/sleuteltechnologie proposal; 3. Partnerships in the regional and national innovation ecosystem, in particular Mind Labs and Data Development Lab (DDL); 4. A shared Digital Realities Lab infrastructure, in particular hardware/software/peopleware for Augmented and Mixed Reality; 5. Leadership, support and operational capacity to achieve and support the above. The proposal presents a work program and management structure, with external partners in an advisory role.