Dienst van SURF
© 2025 SURF
De zorgsector verwerkt zeer gevoelige persoonsgegevens, waaronder gezondheidsgegevens. Bij onvoorzichtige omgang, kan dit een grote impact hebben op de rechten en vrijheden van natuurlijke personen. eHealth moet daarom voldoen aan het vereiste van data protection by design. Wanneer hieraan niet is voldaan, is het zaak om handhavend op te treden ter voorkoming van datalekken. Sinds de Algemene Verordening Gegevensbescherming (AVG) van toepassing is, bereikten meerdere datalekken het voorpaginanieuws waarbij eHealth niet voldeed aan voornoemde verplichting. In dit artikel onderzoeken de auteurs in hoeverre de in de AVG opgenomen handhavingsmogelijkheden met bijbehorende rechtsmiddelen de bescherming van persoonsgegevens waarborgen bij de inzet van eHealth.
Following the rationale of the current EU legal framework protecting personal data, children are entitled to the same privacy and data protection rights as adults. However, the child, because of his physical and mental immaturity, needs special safeguards and care, including appropriate legal protection. In the online environment, children are less likely to make any checks or judgments before entering personal information. Therefore, this paper presents an analysis of the extent to which EU regulation can ensure children’s online privacy and data protection.
During the coronavirus pandemic, the use of eHealth tools became increasingly demanded by patients and encouraged by the Dutch government. Yet, HBO health professionals demand clarity on what they can do, must do, and cannot do with the patients’ data when using digital healthcare provision and support. They often perceive the EU GDPR and its national application as obstacles to the use of eHealth due to strict health data processing requirements. They highlight the difficulty of keeping up with the changing rules and understanding how to apply them. Dutch initiatives to clarify the eHealth rules include the 2021 proposal of the wet Elektronische Gegevensuitwisseling in de Zorg and the establishment of eHealth information and communication platforms for healthcare practitioners. The research explores whether these initiatives serve the needs of HBO health professionals. The following questions will be explored: - Do the currently applicable rules and the proposed wet Elektronische Gegevensuitwisseling in de Zorg clarify what HBO health practitioners can do, must do, and cannot do with patients’ data? - Does the proposed wet Elektronische Gegevensuitwisseling in de Zorg provide better clarity on the stakeholders who may access patients’ data? Does it ensure appropriate safeguards against the unauthorized use of such data? - Does the proposed wet Elektronische Gegevensuitwisseling in de Zorg clarify the EU GDPR requirements for HBO health professionals? - Do the eHealth information and communication platforms set up for healthcare professionals provide the information that HBO professionals need on data protection and privacy requirements stemming from the EU GDPR and from national law? How could such platforms be better adjusted to the HBO professionals’ information and communication needs? Methodology: Practice-oriented legal research, semi-structured interviews and focus group discussions will be conducted. Results will be translated to solutions for HBO health professionals.
This project addresses the fundamental societal problem that encryption as a technique is available since decades, but has never been widely adopted, mostly because it is too difficult or cumbersome to use for the public at large. PGP illustrates this point well: it is difficult to set-up and use, mainly because of challenges in cryptographic key management. At the same time, the need for encryption has only been growing over the years, and has become an urgent problem with stringent requirements – for instance for electronic communication between doctors and patients – in the General Data Protection Regulation (GDPR) and with systematic mass surveillance activities of internationally operating intelligence agencies. The interdisciplinary project "Encryption for all" addresses this fundamental problem via a combination of cryptographic design and user experience design. On the cryptographic side it develops identity-based and attribute-based encryption on top of the attribute-based infrastructure provided by the existing IRMA-identity platform. Identity-based encryption (IBE) is a scientifically well-established technique, which addresses the key management problem in an elegant manner, but IBE has found limited application so far. In this project it will be developed to a practically usable level, exploiting the existing IRMA platform for identification and retrieval of private keys. Attribute-based encryption (ABE) has not reached the same level of maturity yet as IBE, and will be a topic of further research in this project, since it opens up attractive new applications: like a teacher encrypting for her students only, or a company encrypting for all employees with a certain role in the company. On the user experience design side, efforts will be focused on making these encryption techniques really usable (i.e., easy to use, effective, efficient, error resistant) for everyone (e.g., also for people with disabilities or limited digital skills). To do so, an iterative, human-centred and inclusive design approach will be adopted. On a fundamental level, scientific questions will be addressed, such as how to promote the use of security and privacy-enhancing technologies through design, and whether and how usability and accessibility affect the acceptance and use of encryption tools. Here, theories of nudging and boosting and the unified theory of technology acceptance and use (known as UTAUT) will serve as a theoretical basis. On a more applied level, standards like ISO 9241-11 on usability and ISO 9241-220 on the human-centred design process will serve as a guideline. Amongst others, interface designs will be developed and focus groups, participatory design sessions, expert reviews and usability evaluations with potential users of various ages and backgrounds will be conducted, in a user experience and observation laboratory available at HAN University of Applied Sciences. In addition to meeting usability goals, ensuring that the developed encryption techniques also meet national and international accessibility standards will be a particular point of focus. With respect to usability and accessibility, the project will build on the (limited) usability design experiences with the mobile IRMA application.
Human kind has a major impact on the state of life on Earth, mainly caused by habitat destruction, fragmentation and pollution related to agricultural land use and industrialization. Biodiversity is dominated by insects (~50%). Insects are vital for ecosystems through ecosystem engineering and controlling properties, such as soil formation and nutrient cycling, pollination, and in food webs as prey or controlling predator or parasite. Reducing insect diversity reduces resilience of ecosystems and increases risks of non-performance in soil fertility, pollination and pest suppression. Insects are under threat. Worldwide 41 % of insect species are in decline, 33% species threatened with extinction, and a co-occurring insect biomass loss of 2.5% per year. In Germany, insect biomass in natural areas surrounded by agriculture was reduced by 76% in 27 years. Nature inclusive agriculture and agri-environmental schemes aim to mitigate these kinds of effects. Protection measures need success indicators. Insects are excellent for biodiversity assessments, even with small landscape adaptations. Measuring insect biodiversity however is not easy. We aim to use new automated recognition techniques by machine learning with neural networks, to produce algorithms for fast and insightful insect diversity indexes. Biodiversity can be measured by indicative species (groups). We use three groups: 1) Carabid beetles (are top predators); 2) Moths (relation with host plants); 3) Flying insects (multiple functions in ecosystems, e.g. parasitism). The project wants to design user-friendly farmer/citizen science biodiversity measurements with machine learning, and use these in comparative research in 3 real life cases as proof of concept: 1) effects of agriculture on insects in hedgerows, 2) effects of different commercial crop production systems on insects, 3) effects of flower richness in crops and grassland on insects, all measured with natural reference situations