Dienst van SURF
© 2025 SURF
In this policy brief we recommend that in order to face numerous societal challenges such as migration and climate change, regional governments should create a culture of innovation by opening up themselves and stimulate active citizenship by supporting so called Public Sector Innovation (PSI) labs. These labs bring together different types of stakeholders that will explore new solutions for societalchallenges and come up with new policies to tackle them. This method has been developed and tested in a large EU funded research project.
The online presence of organizations is long gone from being just a web page. Social media have enabled easy and inexpensive interaction between millions of individuals and communities. This has not gone unnoticed by cultural heritage institutes. The question is what all these social media activities bring. Even if an institute knows what it tries to achieve online, the metrics often consist of confusing accumulation of statistics, across several systems and reveal little about online user behaviour, engagement and satisfaction. In the research project Museum Compass a prototype of a social media monitor is developed, which will contain data of current and historic online activities on Facebook, Twitter, YouTube, Foursquare and Flickr of all registered Dutch museums. The first version of this monitor has been developed, and we believe that this is a good moment to discuss – mostly in a practical sense – our general approach and preliminary results.
Deze rapportage is het resultaat van een praktijkgericht onderzoek naar een bijzonder project De Kunst van Delen. In samenwerking met het Grijze Koppen Orkest, hebben diverse organisaties uit Utrecht door middel van het project De Kunst van Delen een bijdrage geleverd aan Utrecht als Age Friendly Cultural City (AFCC). Deze onderzoeksrapportage is als volgt opgebouwd: In het eerste hoofdstuk schetsen we de achtergrond en context van het project De Kunst van Delen en het onderzoeksdoel en de onderzoeksvraag worden gepresenteerd. In hoofdstuk 2 staan de eerste onderzoeksstap, de participerende observaties, en de tussenresultaten daarvan beschreven. Hoofdstuk 3 behandelt de tweede onderzoeksstap: de individuele interviews en de tussenresultaten ervan, in de vorm van de belangrijkste voorwaarden van het project De Kunst van Delen voor de ontwikkeling van stad Utrecht als Age Friendly Cultural City. In hoofdstuk 4 is te lezen hoe de validering van die voorwaarden heeft plaatsgevonden en wat deze validering heeft opgeleverd. Dat is de derde stap in het onderzoek. Als vierde en laatste stap in het onderzoeksproces, is op basis van die gevalideerde voorwaarden een verkennend literatuur-onderzoek uitgevoerd. Dit literatuuronderzoek is te lezen in hoofdstuk 5. In hoofdstuk 6 zijn tot slot de conclusie en aanbevelingen van dit verkennend praktijkgericht onderzoek te vinden.
In onze visie voeren robots autonoom taken uit op de akker. Ze kunnen zaaien, oogsten, onkruid verwijderen, gewassen monitoren en verzorgen. Hierdoor zijn agrariërs minder kostbare tijd kwijt aan basistaken. Ook zijn er met dit soort robots geen (of veel minder) bestrijdingsmiddelen nodig en rijden er geen zware machines meer op het land. Dit leidt tot minder bodemverdichting en daardoor hoeft het land niet (of minder diep) te worden omgeploegd. Naast een enorme besparing op brandstof leidt dit ook tot een betere bodemkwaliteit en worden nieuwe teelten mogelijk. Agrarische robots zijn volop in ontwikkeling. Er zijn echter nog een aantal uitdagingen die opgelost moeten worden. Eén van die uitdagingen is volledig autonome, robuuste en veilige navigatie. De robot moet kunnen rijden zonder een bestuurder. Het AgriNav project: Agricultural Navigation In dit project werkt Saxion samen met drie pioniers op het gebied van agrarische robots in Nederland. Het doel is om een gedegen beeld van oplossingen voor het navigatieprobleem te ontwikkelen. We brengen daarvoor in kaart welke producten en frameworks er zijn en in hoeverre deze direct te gebruiken zijn. Op basis van de bevindingen maken we een afweging of de navigatie oplossing wordt ingekocht of dat deze zelf wordt ontwikkeld, bijvoorbeeld op basis van bestaande open source projecten. Onderdeel van dit KIEM project is het starten van vervolgtrajecten, zoals RAAK-mkb of RAAK-PRO. Impact Het project “AgriNav” geeft de inzet van kleine autonome zelfrijdende robots in de agrarische sector een boost, waardoor er nieuwe en duurzamere landbouw kan ontstaan. Dit past bij de ambitie van Nederland om voorop te lopen op het gebied van technologie voor voedselproductie. Door het project wordt de kennispositie van het consortium versterkt in zowel de topsector HTSM als AgriFood en de NWA routes “Duurzame productie van gezond en veilig voedsel” en “smart industrie”.
Plastic products are currently been critically reviewed due to the growing awareness on the related problems, such as the “plastic soup”. EU has introduced a ban for a number of single-use consumer products and fossil-based polymers coming in force in 2021. The list of banned products are expected to be extended, for example for single-use, non-compostable plastics in horticulture and agriculture. Therefore, it is crucial to develop sustainable, biodegradable alternatives. A significant amount of research has been performed on biobased polymers. However, plastics are made from a polymer mixed with other materials, additives, which are essential for the plastics production and performance. Development of biodegradable solutions for these additives is lacking, but is urgently needed. Biocarbon (Biochar), is a high-carbon, fine-grained residue that is produced through pyrolysis processes. This natural product is currently used to produce energy, but the recent research indicate that it has a great potential in enhancing biopolymer properties. The biocarbon-biopolymer composite could provide a much needed fully biodegradable solution. This would be especially interesting in agricultural and horticultural applications, since biocarbon has been found to be effective at retaining water and water-soluble nutrients and to increase micro-organism activity in soil. Biocarbon-biocomposite may also be used for other markets, where biodegradability is essential, including packaging and disposable consumer articles. The BioADD consortium consists of 9 industrial partners, a branch organization and 3 research partners. The partner companies form a complementary team, including biomass providers, pyrolysis technology manufacturers and companies producing products to the relevant markets of horticulture, agriculture and packaging. For each of the companies the successful result from the project will lead to concrete business opportunities. The support of Avans, University of Groningen and Eindhoven University of Technology is essential in developing the know-how and the first product development making the innovation possible.
Phosphorus is an essential element for life, whether in the agricultural sector or in the chemical industry to make products such as flame retardants and batteries. Almost all the phosphorus we use are mined from phosphate rocks. Since Europe scarcely has any mine, we therefore depend on imported phosphate, which poses a risk of supply. To that effect, Europe has listed phosphate as one of its main critical raw materials. This creates a need for the search for alternative sources of phosphate such as wastewater, since most of the phosphate we use end up in our wastewater. Additionally, the direct discharge of wastewater with high concentration of phosphorus (typically > 50 ppb phosphorus) creates a range of environmental problems such as eutrophication . In this context, the Dutch start-up company, SusPhos, created a process to produce biobased flame retardants using phosphorus recovered from municipal wastewater. Flame retardants are often used in textiles, furniture, electronics, construction materials, to mention a few. They are important for safety reasons since they can help prevent or spread fires. Currently, almost all the phosphate flame retardants in the market are obtained from phosphate rocks, but SusPhos is changing this paradigm by being the first company to produce phosphate flame retardants from waste. The process developed by SusPhos to upcycle phosphate-rich streams to high-quality flame retardant can be considered to be in the TRL 5. The company seeks to move further to a TRL 7 via building and operating a demo-scale plant in 2021/2022. BioFlame proposes a collaboration between a SME (SusPhos), a ZZP (Willem Schipper Consultancy) and HBO institute group (Water Technology, NHL Stenden) to expand the available expertise and generate the necessary infrastructure to tackle this transition challenge.