Dienst van SURF
© 2025 SURF
Floating wetland treatment systems (FWTS) are an innovative stormwater treatment technology currently being trialled on a larger scale in Australia. FWTS provide support for selected plant species to remove pollutants from stormwater discharged into a water body. The plant roots provide large surface areas for biofilm growth, which serves to trap suspended particles and enable the biological uptake of nutrients by the plants. As FWTS can be installed at the start of the construction phase, they can start treating construction runoff almost immediately. FWTS therefore have the potential to provide the full range of stormwater treatment (e.g. sediment and nutrient removal) from the construction phase onwards. A 2,100m 2 FWTS has been installed within a greenfield development site on the Sunshine Coast, Queensland. A four-year research study is currently underway which will target the following three objectives; (1) characterise the water quality of runoff from a greenfield development in the construction and operational phases; (2) verify the stormwater pollution removal performance of a FWTS during the construction and operational phases of a greenfield development; and (3) characterise the ability of FWTS to manage urban lake health. This extended abstract presents the proposed research methodology and anticipated outcomes of the study
MULTIFILE
Communities worldwide are critically re-examining their seasonal cultures and calendars. As cultural frameworks, seasons have long patterned community life and provided repertoires for living by annual rhythms. In a chaotic world, the seasons - winter, the monsoon and so on - can feel like stable cultural landmarks for reckoning time and orienting our communities. Seasons are rooted in our pasts and reproduced in our present. They act as schemes for synchronising community activities and professional practices, and as symbol systems for interpreting what happens in the world. But on closer inspection, seasons can be unstable and unreliable. Their meanings can change over time. Seasonal cultures evolve with environments and communities’ worldviews, values, technologies and practices, affecting how people perceive seasonal patterns and behave accordingly. Calendars are contested, especially now. Communities today find themselves in a moment of accelerated and intersecting changes - from climate to social, political, and technological - that are destabilizing seasonal cultures. How they reorient themselves to shifting patterns may affect whether seasonal rhythms serve as resources, or lead people down maladaptive pathways. A focus on seasonal cultures builds on multi-disciplinary work. The social sciences, from anthropology to sociology, have long studied how seasons order people’s sense of time, social life, relationship to the environment, and politics. In the humanities, seasons play an important role in literature, art, archaeology and history. This book advances scholarship in these fields, and enriches it with extrascientific insights from practice, to open up exiting new directions in climate adaptation. Critically questions traditional, often-static notions of seasons; re-interpreting them as more flexible, cultural frameworks adapting to changes to our societies and environments.
LINK
Permeable pavements are a type of sustainable urban drainage system (SUDS)technique that are used around the world to infiltrate and treat urban Stormwater runoff and to minimize runoff volumes. Urban stormwater runoff contains significant concentrations of suspended sediments that can cause clogging and reduce the infiltration capacity and effectiveness of permeable pavements. It is important for stormwater managers to be able to determine when the level of clogging has reached an unacceptable level, so that they can schedule maintenance or replacement activities as required. Newly-installed permeable pavements in the Netherlands must demonstrate a minimum infiltration capacity of 194 mm/h (540 l/s/ha). Other commonly used permeable pavement guidelines in the Netherlands recommend that maintenance is undertaken on permeable pavements when the infiltration falls below 0.50 m/d (20.8 mm/h). This study used a newly-developed, full-scale infiltrationtest procedure to evaluate the infiltration performance of eight permeable pavements in five municipalities that had been in service for over seven years in the Netherlands. The determined infiltration capacities vary between 29 and 342 mm/h. Two of the eight pavements show an infiltration capacity higher than 194 mm/h, and all infiltration capacities are higher than 20.8 mm/h. According to the guidelines, this suggests that none of the pavements tested in this study would require immediate maintenance.