Dienst van SURF
© 2025 SURF
Workers are an important factor in the implementation of a construction project. Applying ergonomic postures for workers in the projects is necessary to minimize the risk of work accidents and the risk of experiencing musculoskeletal disorders (MsDs). The use of lightweight brick for wall construction is relatively new and is in great demand by construction industries in Indonesia. During wall construction, workers do repetitive activities such as bending, kneeling, holding tools, or tilting the body. These activities potentially increase the risk of injury and musculoskeletal disorders. This study aims to assess the work posture of workers on the wall construction using lightweight brick and to analyze the high-risk activities. The wall construction work assessment included five stages of activities, (1) material transfer, (2) practical columns making and installation, (3) lightweight brick adhesive dough-making process, (4) lightweight bricks laying, and (5) lightweight brick plaster. The Rapid Upper Limb Assessment (RULA) method was used to evaluate the working posture. This method was developed to investigate the risk of abnormalities that workers will potentially experience. Based on the RULA employee assessment worksheet, the research results showed that 69% of workers have a high-risk level of work posture and 31% have low-risk levels of work posture. There are three activities with a high-risk level, namely, material transfer, lightweight brick laying, and lightweight brick plaster. At the same time, practical column making and installation work and lightweight brick adhesive dough-making processes are at a low-risk level. According to the RULA risk level, action is required to investigate and immediately improve activities with a high-risk level. If workers continue to work with the same posture, they will be at risk of developing musculoskeletal disorders related to the neck, trunk, and wrists in the near future. Correcting the worker’s posture can be done by improving work position, process, and workplace layout.
The growth in urban population and economic upturnis leading to higher demand for construction, repairand renovation works in cities. Houses, public utilities,retail spaces, offices and infrastructure need toadapt to cope with the increasing number of residentsand visitors, urban functions and changing standards.Construction projects contribute to more attractive,sustainable and economically viable urban areas oncethey are finished. However, transport activities relatedto construction works have negative impacts on thesurrounding community if not handled appropriately.It is estimated that 15 to 20 percent of heavy goodsvehicles in cities are related to construction, and 30to 40 percent of light commercial vans [1]. In the citiesstudied in the CIVIC project, construction-relatedtransport was found to be one of the biggest challengesto improving sustainability. Smarter, cleaner and saferconstruction logistics solutions in urban areas areneeded for environmental, societal and economicreasons. However, in many European cities and metropolitanareas the sense of urgency is not evident or alack of knowledge is creating passivity.
Het project Under Construction (UC) is in 2003 van start gegaan als coproductie van het lectoraat Gedragsproblemen in de onderwijspraktijk en het lectoraat Vernieuwende Opleidingsmethodiek en -didactiek. Sinds september 2005 is het een productie van eerstgenoemde en zijn ook Instituut Theo Thijssen (ITT) en het Seminarium voor Orthopedagogiek betrokken bij het onderzoek dat plaatsvindt vanuit het lectoraat. UC op ITT staat centraal in dit katern. Binnen ITT was de behoefte ontstaan aan een nieuwe manier om studenten te leren reflecteren op de beroepspraktijk. Reflecteren is terugkijken en nadenken over iets dat is geweest maar vooral ook is het een middel om te leren handelen (denken en voelen) in toekomstige situaties. Het doel van reflecteren is bewustwording van en inzicht krijgen in eigen handelen en gedrag met het oogmerk het persoonlijk professioneel handelen te verbeteren in (toekomstige) beroepssituaties. (Groen 2006) Het doel van de methode UC is geformuleerd als (aanstaande) leraren in het basis-, voortgezet en speciaal onderwijs inzicht te bieden in hun persoonlijke opvattingen en overtuigingen over de leerlingen in hun klas. In de constructtheorie van Kelly worden dit constructen genoemd. Constructen zijn vaak onbewust of impliciet. Dat wil zeggen, ze zijn wel aanwezig, maar ze zijn niet eerder door de eigenaar (lees de leraar) geëxpliciteerd. En dat laatste is belangrijk, omdat wat wij denken te zien meer is wat we denken dan wat we zien.
The postdoc candidate, Giuliana Scuderi, will strengthen the connection between the research group Biobased Buildings (BB), (collaboration between Avans University of Applied Sciences and HZ University of Applied Sciences (HZ), and the Civil Engineering bachelor programme (CE) of HZ. The proposed research aims at deepening the knowledge about the mechanical properties of biobased materials for the application in the structural and infrastructural sectors. The research is relevant for the professional field, which is looking for safe and sustainable alternatives to traditional building materials (such as lignin asphalt, biobased panels for bridge constructions, etc.). The study of the mechanical behaviour of traditional materials (such as concrete and steel) is already part of the CE curriculum, but the ambition of this postdoc is that also BB principles are applied and visible. Therefore, from the first year of the programme, the postdoc will develop a biobased material science line and will facilitate applied research experiences for students, in collaboration with engineering and architectural companies, material producers and governmental bodies. Consequently, a new generation of environmentally sensitive civil engineers could be trained, as the labour market requires. The subject is broad and relevant for the future of our built environment, with possible connections with other fields of study, such as Architecture, Engineering, Economics and Chemistry. The project is also relevant for the National Science Agenda (NWA), being a crossover between the routes “Materialen – Made in Holland” and “Circulaire economie en grondstoffenefficiëntie”. The final products will be ready-to-use guidelines for the applications of biobased materials, a portfolio of applications and examples, and a new continuous learning line about biobased material science within the CE curriculum. The postdoc will be mentored and supervised by the Lector of the research group and by the study programme coordinator. The personnel policy and job function series of HZ facilitates the development opportunity.
The research proposal aims to improve the design and verification process for coastal protection works. With global sea levels rising, the Netherlands, in particular, faces the challenge of protecting its coastline from potential flooding. Four strategies for coastal protection are recognized: protection-closed (dikes, dams, dunes), protection-open (storm surge barriers), advancing the coastline (beach suppletion, reclamation), and accommodation through "living with water" concepts. The construction process of coastal protection works involves collaboration between the client and contractors. Different roles, such as project management, project control, stakeholder management, technical management, and contract management, work together to ensure the project's success. The design and verification process is crucial in coastal protection projects. The contract may include functional requirements or detailed design specifications. Design drawings with tolerances are created before construction begins. During construction and final verification, the design is measured using survey data. The accuracy of the measurement techniques used can impact the construction process and may lead to contractual issues if not properly planned. The problem addressed in the research proposal is the lack of a comprehensive and consistent process for defining and verifying design specifications in coastal protection projects. Existing documents focus on specific aspects of the process but do not provide a holistic approach. The research aims to improve the definition and verification of design specifications through a systematic review of contractual parameters and survey methods. It seeks to reduce potential claims, improve safety, enhance the competitiveness of maritime construction companies, and decrease time spent on contractual discussions. The research will have several outcomes, including a body of knowledge describing existing and best practices, a set of best practices and recommendations for verifying specific design parameters, and supporting documents such as algorithms for verification.
The research for alternatives to substitute cement in concrete increased in the last years to reduce the environmental impact. Geopolymers or alkali-activated materials are one of the options. The proposed project aims to obtain a wet cell based on a geopolymer with alginate and natural fibres. The wet cell will be a final prototype composed of panels for wet construction areas such as bathrooms and kitchens. There is a lack of biobased solutions for wet areas currently in the market. And the present project, together with companies of suppliers and users from the market, aims to provide a solution for a wet cell using biobased materials. The natural fibres added to the geopolymer will substitute a portion of sand and gravel, producing a lighter product than concrete. Also, the fibres increase the thermal and acoustic insulation. Natural fibres should be pretreated to increase the bond with other materials in the mixture. The chemical used in the alkali-activated materials is the same to pretreat the fibres. Also, alginates extracted from seaweeds can be used as binders, and alkali is used in the extraction process. One of the objectives is to develop the method and technique to produce geopolymer with alginates and pretreat the fibre simultaneously during the mixture. After defining the optimum mixture for the geopolymer, panels will be produced, and in the end, a wet cell will be constructed with the geopolymer panels.