Dienst van SURF
© 2025 SURF
Climate change is expected to have a large impact on coastal cities all around the world. Due to the expected sea level rise for coastal regions new flood defense policies are developed, with emphasis on risk assessment and a multifunctional approach to strengthening existing coastal defenses. Most climate adaptation programs in cities focus on technical measures with little international knowledge exchange of the best management practices and governance. In this article the best management practices of two coastal cities both named ‘Bergen’ is discussed.
Globally, coastal areas can be seen as the most popular tourist-recreational destinations. Consequently, these destinations generate major visitor flows. Furthermore, they are interpreted differently by every visitor, for example depending on lifestyles and age. These two problems, or maybe chances, are the central focus in this article. More specifically, this conceptual paper examines what the typical coastal experience consists of and in which ways the producers of the tourist-recreational coastal product can anticipate this. After explaining the principles of visitor management, as defined by Ennen, a theoretical framework is presented that tries to capture the total coastal experience. Then, two existing coastal areas are projected onto this framework. Finally, some conclusions are drawn.
MULTIFILE
Digitalization is gaining increasing attention in Higher Education (HE). The integrationof digital tools into instructional settings is particularly challenging, However, it offers manyopportunities to improve the learning process of students, especially in interdisciplinary teachingscenarios such as teaching sustainable usage of space and resources i.e. for the coastal zones and themarine areas. Worldwide, Marine Spatial Planning (MSP) and Integrated Coastal Zone Management(ICZM) are much needed approaches to manage and organize the increasing use of the sea andcoastal areas. Both are complex fields that are attracting more and more attention in interdisciplinaryHE. Correspondingly designed, the module ‘Planning and Management of Coastal Zones and SeaBasins’ at the University of Oldenburg, Germany, provides a case for integrating digital tools intoHE. In 2020, the digital serious game ‘MSP Challenge´ was used in an online learning format. Thisinteractive and collaborative tool supports informed decision making based on real and simulateddata, comparable to business (decision) processes based on environmental information systems(EIS). Therefore, the MSP Challenge game fosters not only the understanding of the complex topicbut additionally methodological skills which can be transferred to the usage EIS. While playing,students become able to (1) evaluate and simulate impacts of uses on coastal and marineenvironments, (2) describe the main interactions in ecosystems, (3) conceptualize information forsectoral or integrated MSP and (4) reflect on the role and use of data. In the presented case masterstudents studying “Water and Coastal Management” participated in the module. Moreover, thedigital serious game and the interdisciplinary topics of MSP and ICZM provides additionalopportunities to explore subtopics (e.g. IT-related) from other disciplinary perspectives.
LINK
Nederland heeft in het Natura 2000 Beheerplan Deltawateren richtlijnen vastgelegd voor natuurbehoud en biodiversiteit. De Nederlandse wateren en de deltagebieden maken tweederde uit van de Natura 2000 gebieden en vormen een belangrijk leefgebied voor kustbroedvogels en zijn voor trekvogels onmisbaar als rustgebied en plek om te foerageren. Om natuurbeheer effectiever te kunnen laten verlopen, is monitoring van de dynamiek van estuariene natuur in de deltabeheercyclus van groot belang. Het biedt publieke professionals mogelijkheden om systeemontwerpen en/of systeemingrepen (tijdig) aan te passen. Voor projectmonitoring wordt gebruik gemaakt van conventionele meettechnieken die veelal arbeidsintensief en dus kostbaar zijn. Doel van dit project is te onderzoeken of het monitoren van natuurherstelprojecten efficiënter kan. Kernvraag is of door de inzet van nieuwe meettechnieken meer of andersoortige data tegen lagere kosten, over grotere arealen en met betere temporele resoluties kan worden vergaard. Oftewel meer systeembegrip. Op drie locaties in de Westerschelde (Baalhoek, Knuitershoek en Perkpolder) wordt geëxperimenteerd met innovatieve meettechnieken om beter inzicht te krijgen op factoren die van invloed zijn op het functioneren van getijdenecosystemen. Data van negen kernparameters wordt ingewonnen: (1) vogelaantallen, (2) benthos als vogelvoedsel, (3) benthos als bioturbator, (4) middelgrootte schaal morfologie, (5) grootschalige morfologie, (6) korte termijn (dagelijkse) veranderingen in sedimenthoogte, (7) bodemdichtheid, (8) hydrodynamiek: stroming /golven en (9) sedimentconcentraties in water. Het activiteitenplan bestaat uit zes werkpakketten: (1)het fysiek inrichten van de meetlocaties, (2) data-acquisitie op zowel conventionele- als innovatieve wijze, (3) data-analyse door vergelijkend onderzoek, (4) het ontwikkelen van een afwegingskader voor publieke professionals, (5) een plan van doorwerking en (6) projectmanagement. Na afronding van elke meetcampagne worden data geanalyseerd en vergeleken met modellen en kennis die tot dan toe bekend is. Kennis en expertise wordt op de DeltaExpertise-site (HZ Body of Knowledge) gestructureerd en ontsloten met behulp van de Expertise Management Methodologie en de Soft Systems Methodologie.
Governments, fishermen, dredgers, nature organizations and researchers see that sand stocks are dwindling worldwide, while more and more sand from the North Sea will be needed to protect our coast against rising sea levels. We also extract a lot of sand in the Netherlands, especially from the North Sea. Every year we extract about 12 to 15 million cubic meters to protect our coast and about 15 million cubic meters as filling sand for roads and residential areas and for concrete and masonry sand. Every year we excavate a piece of seabed with the surface of the Schiermonnikoog island at a depth of about eighty centimeters. But our sand requirement continues to rise. Not only because we want to build more roads, homes and residential areas, but also because rising sea levels mean we need more and more sand for coastal protection. In this project a consortium of 21 partners and stakeholders will develop new knowledge and tools about the effects of sand extraction, with the goal to understand how it may be done sustainably despite the rising need for it. The project is led by Wageningen Marine Research and has been awarded funding under the ‘Onderzoek op Routes door Consortia’ (NWA ORC-call 2020/2021) scheme of the Dutch Research Council (NWO). Breda University of Applied Sciences will contribute with its MSP Challenge Simulation Platform, thereby developing and applying a bespoke sand extraction oriented North Sea edition, in close collaboration with data and simulation providing partners in the project.
Nature-based coastal management is mainstream in the Netherlands. About 12 Mm3 of sand is added annually to the coast to compensate coastal erosion and maintain high safety levels against flooding. This amount will likely increase to compensate for accelerated sea level rise. (Mega-)Nourishments may also strengthen and support biodiversity and recreational values of the coastal zone and associated wetland areas. However, the ecological and societal impacts of mega-nourishments on open coasts are not well established, hampering comparison of pros and cons of different nourishment strategies. This knowledge gap is largely due to the lack of suitable methods to monitor and predict the spreading of nourishment sand along the coast and into tidal basins. Ameland Inlet provides us with a unique opportunity to develop and test novel approaches to fill this knowledge gap in close collaboration with our consortium and stakeholders. In 2018 the first tidal inlet mega-nourishment (5 Mm3) was placed in the Ameland Inlet ebb-tidal delta, and geomorphic and biotic responses nearby are closely monitored in the Kustgenese 2.0 and SEAWAD programmes. Our research builds on the insights gained, will gather new data to investigate off-site effects (linked with SIBES/SIBUS sampling), and build a common knowledge-base with stakeholders. We will develop novel luminescence-based methods to monitor the temporal and spatial dispersal of nourishment sand. These insights will be combined with an inventory of off-site biotic responses to nourishment and the role biota play in the mixing of nourishment sand with natural sediments. Combined results will be used to develop and validate models to trace transport paths of individual grains and improve morphodynamic predictions. Throughout the project, we will collaborate and interact intensely with coastal managers and (local) stakeholders to address concerns and exchange insights, creating a platform for co-assessment and optimization of nourishment designs and strategies.