Dienst van SURF
© 2025 SURF
The exploitation of the metagenome for novel biocatalysts by functional screening is determined by the ability to express the respective genes in a surrogate host. The probability of recovering a certain gene thereby depends on its abundance in the environmental DNA used for library construction, the chosen insert size, the length of the target gene, and the presence of expression signals that are functional in the host organism. In this paper, we present a set of formulas that describe the chance of isolating a gene by random expression cloning, taking into account the three different modes of heterologous gene expression: independent expression, expression as a transcriptional fusion and expression as a translational fusion. Genes of the last category are shown to be virtually inaccessible by shotgun cloning because of the low frequency of functional constructs. To evaluate which part of the metagenome might in this way evade exploitation, 32 complete genome sequences of prokaryotic organisms were analysed for the presence of expression signals functional in E. coli hosts, using bioinformatics tools. Our study reveals significant differences in the predicted expression modes between distinct taxonomic groups of organisms and suggests that about 40% of the enzymatic activities may be readily recovered by random cloning in E. coli.
Common cloning is often associated with instability of certain classes of DNA. Here we report on IS1 transposition as possible source of such instability. During the cloning of Arabidopsis thaliana gene into commercially available vector maintained in widely used Escherichia coli host the insertion of complete IS1 element into the intron of cloned gene was found. The transposition of the IS1 element was remarkably rapid and is likely to be sequence-specific. The use of E. coli strains that lower the copy number of vector or avoiding the presence of the problematic sequence is a solution to the inadvertent transposition of IS1. The transposition of IS1 is rare but it can occur and might confound functional studies of a plant gene.
Control of plant growth is an important aspect of crop productivity and yield in agriculture. Overexpression of the At CHR12/ 23 genes in Arabidopsis thaliana reduced growth habit without other morphological changes. These two genes encode Snf2 chromatin remodelling ATPases. Here, we translate this approach to the horticultural crop tomato ( Solanum lycopersicum). We identified and cloned the single tomato ortholog of the two Arabidopsis Snf2 genes, designated Sl CHR1. Transgenic tomato plants (cv. Micro-Tom) that constitutively overexpress the coding sequence of Sl CHR1 show reduced growth in all developmental stages of tomato. This confirms that Sl CHR1 combines the functions of both Arabidopsis genes in tomato. Compared to the wild type, the transgenic seedlings of tomato have significantly shorter roots, hypocotyls and reduced cotyledon size. Transgenic plants have a much more compact growth habit with markedly reduced plant height, severely compacted reproductive structures with smaller flowers and smaller fruits. The results indicate that either GMO-based or non- GMO-based approaches to modulate the expression of chromatin remodelling ATPase genes could develop into methods to control plant growth, for example to replace the use of chemical growth retardants. This approach is likely to be applicable and attractive for any crop for which growth habit reduction has added value.