Dienst van SURF
© 2025 SURF
Description of a new hand/palm-held computerized 3D force measuring system. The system is built for interface (direct) measurement of 3D manual contact force with real-time data presentation. Static calibration was performed of the 3D force sensor with variable preloads to study their effect as well of the prototype system adapted for clinical manual examination and treatment. The new system enables, for the first time, recording and presenting of 3D manual contact forces at the patient-practitioner interface. 3D direct manual contact force measures have the potential to give a more complete and differentiated characterization of patient and practitioner forces than 1D forces. Clinical validity of the prototype system will have to be investigated, and for studying specific clinical manual handling techniques, obvious limitations require further development.
PURPOSE: Clinical examination is often the first step to diagnose shock and estimate cardiac index. In the Simple Intensive Care Studies-I, we assessed the association and diagnostic performance of clinical signs for estimation of cardiac index in critically ill patients.METHODS: In this prospective, single-centre cohort study, we included all acutely ill patients admitted to the ICU and expected to stay > 24 h. We conducted a protocolised clinical examination of 19 clinical signs followed by critical care ultrasonography for cardiac index measurement. Clinical signs were associated with cardiac index and a low cardiac index (< 2.2 L min-1 m2) in multivariable analyses. Diagnostic test accuracies were also assessed.RESULTS: We included 1075 patients, of whom 783 (73%) had a validated cardiac index measurement. In multivariable regression, respiratory rate, heart rate and rhythm, systolic and diastolic blood pressure, central-to-peripheral temperature difference, and capillary refill time were statistically independently associated with cardiac index, with an overall R2 of 0.30 (98.5% CI 0.25-0.35). A low cardiac index was observed in 280 (36%) patients. Sensitivities and positive and negative predictive values were below 90% for all signs. Specificities above 90% were observed only for 110/280 patients, who had atrial fibrillation, systolic blood pressures < 90 mmHg, altered consciousness, capillary refill times > 4.5 s, or skin mottling over the knee.CONCLUSIONS: Seven out of 19 clinical examination findings were independently associated with cardiac index. For estimation of cardiac index, clinical examination was found to be insufficient in multivariable analyses and in diagnostic accuracy tests. Additional measurements such as critical care ultrasonography remain necessary.
Low back pain is the leading cause of disability worldwide and a significant contributor to work incapacity. Although effective therapeutic options are scarce, exercises supervised by a physiotherapist have shown to be effective. However, the effects found in research studies tend to be small, likely due to the heterogeneous nature of patients' complaints and movement limitations. Personalized treatment is necessary as a 'one-size-fits-all' approach is not sufficient. High-tech solutions consisting of motions sensors supported by artificial intelligence will facilitate physiotherapists to achieve this goal. To date, physiotherapists use questionnaires and physical examinations, which provide subjective results and therefore limited support for treatment decisions. Objective measurement data obtained by motion sensors can help to determine abnormal movement patterns. This information may be crucial in evaluating the prognosis and designing the physiotherapy treatment plan. The proposed study is a small cohort study (n=30) that involves low back pain patients visiting a physiotherapist and performing simple movement tasks such as walking and repeated forward bending. The movements will be recorded using sensors that estimate orientation from accelerations, angular velocities and magnetometer data. Participants complete questionnaires about their pain and functioning before and after treatment. Artificial analysis techniques will be used to link the sensor and questionnaire data to identify clinically relevant subgroups based on movement patterns, and to determine if there are differences in prognosis between these subgroups that serve as a starting point of personalized treatments. This pilot study aims to investigate the potential benefits of using motion sensors to personalize the treatment of low back pain. It serves as a foundation for future research into the use of motion sensors in the treatment of low back pain and other musculoskeletal or neurological movement disorders.