Dienst van SURF
© 2025 SURF
Abstract: Background: Chronic obstructive pulmonary disease (COPD) and asthma have a high prevalence and disease burden. Blended self-management interventions, which combine eHealth with face-to-face interventions, can help reduce the disease burden. Objective: This systematic review and meta-analysis aims to examine the effectiveness of blended self-management interventions on health-related effectiveness and process outcomes for people with COPD or asthma. Methods: PubMed, Web of Science, COCHRANE Library, Emcare, and Embase were searched in December 2018 and updated in November 2020. Study quality was assessed using the Cochrane risk of bias (ROB) 2 tool and the Grading of Recommendations, Assessment, Development, and Evaluation. Results: A total of 15 COPD and 7 asthma randomized controlled trials were included in this study. The meta-analysis of COPD studies found that the blended intervention showed a small improvement in exercise capacity (standardized mean difference [SMD] 0.48; 95% CI 0.10-0.85) and a significant improvement in the quality of life (QoL; SMD 0.81; 95% CI 0.11-1.51). Blended intervention also reduced the admission rate (relative ratio [RR] 0.61; 95% CI 0.38-0.97). In the COPD systematic review, regarding the exacerbation frequency, both studies found that the intervention reduced exacerbation frequency (RR 0.38; 95% CI 0.26-0.56). A large effect was found on BMI (d=0.81; 95% CI 0.25-1.34); however, the effect was inconclusive because only 1 study was included. Regarding medication adherence, 2 of 3 studies found a moderate effect (d=0.73; 95% CI 0.50-0.96), and 1 study reported a mixed effect. Regarding self-management ability, 1 study reported a large effect (d=1.15; 95% CI 0.66-1.62), and no effect was reported in that study. No effect was found on other process outcomes. The meta-analysis of asthma studies found that blended intervention had a small improvement in lung function (SMD 0.40; 95% CI 0.18-0.62) and QoL (SMD 0.36; 95% CI 0.21-0.50) and a moderate improvement in asthma control (SMD 0.67; 95% CI 0.40-0.93). A large effect was found on BMI (d=1.42; 95% CI 0.28-2.42) and exercise capacity (d=1.50; 95% CI 0.35-2.50); however, 1 study was included per outcome. There was no effect on other outcomes. Furthermore, the majority of the 22 studies showed some concerns about the ROB, and the quality of evidence varied. Conclusions: In patients with COPD, the blended self-management interventions had mixed effects on health-related outcomes, with the strongest evidence found for exercise capacity, QoL, and admission rate. Furthermore, the review suggested that the interventions resulted in small effects on lung function and QoL and a moderate effect on asthma control in patients with asthma. There is some evidence for the effectiveness of blended self-management interventions for patients with COPD and asthma; however, more research is needed. Trial Registration: PROSPERO International Prospective Register of Systematic Reviews CRD42019119894; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=119894
The aim of this study, is to assess changes in prevalence and frailty score during pulmonary rehabilitation (PR) in patients with COPD.
A substantial proportion of chronic disease patients do not respond to self-management interventions, which suggests that one size interventions do not fit all, demanding more tailored interventions. To compose more individualized strategies, we aim to increase our understanding of characteristics associated with patient activation for self-management and to evaluate whether these are disease-transcending. A cross-sectional survey study was conducted in primary and secondary care in patients with type-2 Diabetes Mellitus (DM-II), Chronic Obstructive Pulmonary Disease (COPD), Chronic Heart Failure (CHF) and Chronic Renal Disease (CRD). Using multiple linear regression analysis, we analyzed associations between self-management activation (13-item Patient Activation Measure; PAM-13) and a wide range of socio-demographic, clinical, and psychosocial determinants. Furthermore, we assessed whether the associations between the determinants and the PAM were disease-transcending by testing whether disease was an effect modifier. In addition, we identified determinants associated with low activation for self-management using logistic regression analysis. We included 1154 patients (53% response rate); 422 DM-II patients, 290 COPD patients, 223 HF patients and 219 CRD patients. Mean age was 69.6±10.9. Multiple linear regression analysis revealed 9 explanatory determinants of activation for selfmanagement: age, BMI, educational level, financial distress, physical health status, depression, illness perception, social support and underlying disease, explaining a variance of 16.3%. All associations, except for social support, were disease transcending. This study explored factors associated with varying levels of activation for self-management. These results are a first step in supporting clinicians and researchers to identify subpopulations of chronic disease patients less likely to be engaged in self-management. Increased scientific efforts are needed to explain the greater part of the factors that contribute to the complex nature of patient activation for self-management.