İnsan vücudu ile elektromanyetik dalgaların etkileşimi, dokuların ve hücrelerin dielektrik özellikleri gibi faktörlerin yanı sıra diğer etkenler tarafından da şekillenir. Mikrodalga hipertermi ve mikrodalga görüntüleme uygulamalarında, deney ortamı ölçüm düzeneklerinde simülasyon sonuçlarını doğrulamak için doku taklit eden materyallere ihtiyaç vardır. Bu çalışmada hipertermi uygulamalarında kullanılmak üzere kadın memelerine ait bazı doku taklit materyallerinin karakterizasyonu sunulmuştur. Karakterize edilen doku taklit malzemelerinin maliyeti ucuz ve üretim aşamaları kolaydır. Deri, kas, meme yağı ve kanserli dokular ISM bandı 434 MHz'de önerilmektedir. The interaction of electromagnetic waves with the human body is determined by the dielectric properties of tissues and cells along with other considerations. The complex dielectric properties of the materials are very important for the interaction of the electromagnetic waves within the human body. In microwave hyperthermia and microwave imaging applications, there is a need of tissue mimicking materials to validate the simulation results in in vitro measurement setups. In this paper, we presented the characterization of some tissue materials belonging to female breast to be used for hyperthermia applications. The characterized tissue mimicking materials are inexpensive and have simple recipes that are easy to formulate. Skin, muscle, breast fat and cancerous tissues are proposed at ISM band 434 MHz.
İnsan vücudu ile elektromanyetik dalgaların etkileşimi, dokuların ve hücrelerin dielektrik özellikleri gibi faktörlerin yanı sıra diğer etkenler tarafından da şekillenir. Mikrodalga hipertermi ve mikrodalga görüntüleme uygulamalarında, deney ortamı ölçüm düzeneklerinde simülasyon sonuçlarını doğrulamak için doku taklit eden materyallere ihtiyaç vardır. Bu çalışmada hipertermi uygulamalarında kullanılmak üzere kadın memelerine ait bazı doku taklit materyallerinin karakterizasyonu sunulmuştur. Karakterize edilen doku taklit malzemelerinin maliyeti ucuz ve üretim aşamaları kolaydır. Deri, kas, meme yağı ve kanserli dokular ISM bandı 434 MHz'de önerilmektedir. The interaction of electromagnetic waves with the human body is determined by the dielectric properties of tissues and cells along with other considerations. The complex dielectric properties of the materials are very important for the interaction of the electromagnetic waves within the human body. In microwave hyperthermia and microwave imaging applications, there is a need of tissue mimicking materials to validate the simulation results in in vitro measurement setups. In this paper, we presented the characterization of some tissue materials belonging to female breast to be used for hyperthermia applications. The characterized tissue mimicking materials are inexpensive and have simple recipes that are easy to formulate. Skin, muscle, breast fat and cancerous tissues are proposed at ISM band 434 MHz.
Carboxylated cellulose is an important product on the market, and one of the most well-known examples is carboxymethylcellulose (CMC). However, CMC is prepared by modification of cellulose with the extremely hazardous compound monochloracetic acid. In this project, we want to make a carboxylated cellulose that is a functional equivalent for CMC using a greener process with renewable raw materials derived from levulinic acid. Processes to achieve cellulose with a low and a high carboxylation degree will be designed.
Size measurement plays an essential role for micro-/nanoparticle characterization and property evaluation. Due to high costs, complex operation or resolution limit, conventional characterization techniques cannot satisfy the growing demand of routine size measurements in various industry sectors and research departments, e.g., pharmaceuticals, nanomaterials and food industry etc. Together with start-up SeeNano and other partners, we will develop a portable compact device to measure particle size based on particle-impact electrochemical sensing technology. The main task in this project is to extend the measurement range for particles with diameters ranging from 20 nm to 20 um and to validate this technology with realistic samples from various application areas. In this project a new electrode chip will be designed and fabricated. It will result in a workable prototype including new UMEs (ultra-micro electrode), showing that particle sizing can be achieved on a compact portable device with full measuring range. Following experimental testing with calibrated particles, a reliable calibration model will be built up for full range measurement. In a further step, samples from partners or potential customers will be tested on the device to evaluate the application feasibility. The results will be validated by high-resolution and mainstream sizing techniques such as scanning electron microscopy (SEM), dynamic light scattering (DLS) and Coulter counter.
Chemical preservation is an important process that prevents foods, personal care products, woods and household products, such as paints and coatings, from undesirable change or decomposition by microbial growth. To date, many different chemical preservatives are commercially available, but they are also associated with health threats and severe negative environmental impact. The demand for novel, safe, and green chemical preservatives is growing, and this process is further accelerated by the European Green Deal. It is expected that by the year of 2050 (or even as soon as 2035), all preservatives that do not meet the ‘safe-by-design’ and ‘biodegradability’ criteria are banned from production and use. To meet these European goals, there is a large need for the development of green, circular, and bio-degradable antimicrobial compounds that can serve as alternatives for the currently available biocidals/ preservatives. Anthocyanins, derived from fruits and flowers, meet these sustainability goals. Furthermore, preliminary research at the Hanze University of Applied Science has confirmed the antimicrobial efficacy of rose and tulip anthocyanin extracts against an array of microbial species. Therefore, these molecules have the potential to serve as novel, sustainable chemical preservatives. In the current project we develop a strategy consisting of fractionation and state-of-the-art characterization methods of individual anthocyanins and subsequent in vitro screening to identify anthocyanin-molecules with potent antimicrobial efficacy for application in paints, coatings and other products. To our knowledge this is the first attempt that combines in-depth chemical characterization of individual anthocyanins in relation to their antimicrobial efficacy. Once developed, this strategy will allow us to single out anthocyanin molecules with antimicrobial properties and give us insight in structure-activity relations of individual anthocyanins. Our approach is the first step towards the development of anthocyanin molecules as novel, circular and biodegradable non-toxic plant-based preservatives.