Dienst van SURF
© 2025 SURF
Contrary to most sectors, to date the tourism and aviation industries have not managed to level off greenhouse gas emissions. Moreover, effective mitigation through technological innovation or structural and behavioural change cannot be expected shortly. Airlines and tourism companies appear to use carbon offsetting as a last resort. However, offsetting is generally acknowledged as a second-best solution for mitigating emissions, after reducing energy use. This paper seeks to determine the mitigation potential of voluntary carbon offsetting by comparing public and industry awareness of climate change and aviation emissions, and attitudes to various mitigation measures with relevant online communication by 64 offset providers. Methods were a literature review and online content analyses. Overall, the gaps that were identified between awareness, attitude and actual behaviour are not bridged by provider communication. From this perspective, the mitigation potential of voluntary carbon offsetting for achieving reductions of tourism transport emissions is estimated as low. The same conclusion is reached by comparing carbon dioxide volumes of flight offsets with actual air travel emissions. Current sales of flight offsets compensate less than 1% of all aviation emissions.
MULTIFILE
Technological development from horse-drawn carriages to the new Airbus A380 has led to a remarkable increase in both the capacity and speed of tourist travel. This development has an endogenous systemic cause and will continue to increase carbon dioxide emissions/energy consumption if left unchecked. Another stream of technological research and development aims at reducing pollution and will reduce emissions per passenger-kilometer, but suffers from several rebound effects. The final impact on energy consumption depends on the strength of the positive and negative feedback in the technology system of tourism transport. However, as the core tourism industry including tour operators, travel agencies, and, accommodation has a strong link with air transport, it is unlikely that technological development without strong social and political control will result in delivering the emission reductions required for avoiding dangerous climate change.
Tourism is on course to thwart humanity’s efforts to reach a zero carbon economy because of its high growth rates and carbon intensity. To get out of its carbon predicament, the tourism sector needs professionals with carbon literacy and carbon capability. Providing future professionals in the full spectrum of tourism-related study programmes with the necessary knowledge and skills is essential. This article reports on ten years of experience at a BSc tourism programme with a carbon footprint exercise in which students calculate the carbon footprint of their latest holiday, compare their results with others and reflect on options to reduce emissions. Before they start, the students are provided with a handout with emission factors, a brief introduction and a sample calculation. The carbon footprints usually differ by a factor of 20 to 30 between the highest and lowest. Distance, transport mode and length of stay are almost automatically identified as the main causes, and as the main keys for drastically reducing emissions. The link to the students’ own experience makes the exercise effective, the group comparison makes it fun. As the exercise requires no prior knowledge and is suitable for almost any group size, it can be integrated into almost any tourism-related study programme.
The primary objective of the project is to identify policies for the transformation of the Norwegian tourism sector to become resilient to climate change and carbon risks; to maintain and develop its economic benefits; and to significantly reduce its emissions-intensity per unit of economic output. Collaborative partnersStiftinga Vestlandforsking, Stiftelsen Handelshoyskolen, Stat Sentralbyra, Norges Handelshoyskole, Stiftelsen Nordlandsforskning, Fjord Norge, Hurtigruten, Neroyfjorden Verdsarvpark, Uni Waterloo, Uni Queensland, Desinasjon Voss, Stift Geirangerfjorden Verdsarv, Hogskulen Pa Vestlandet.
Buildings are responsible for approximately 40% of energy consumption and 36% of carbon dioxide (CO2) emissions in the EU, and the largest energy consumer in Europe (https://ec.europa.eu/energy). Recent research shows that more than 2/3 of all CO2 is emitted during the building process whereas less than 1/3 is emitted during use. Cement is the source of about 8% of the world's CO2 emissions and innovation to create a distributive change in building practices is urgently needed, according to Chatham House report (Lehne et al 2018). Therefore new sustainable materials must be developed to replace concrete and fossil based building materials. Lightweight biobased biocomposites are good candidates for claddings and many other non-bearing building structures. Biocarbon, also commonly known as Biochar, is a high-carbon, fine-grained solid that is produced through pyrolysis processes and currently mainly used for energy. Recently biocarbon has also gained attention for its potential value with in industrial applications such as composites (Giorcellia et al, 2018; Piri et.al, 2018). Addition of biocarbon in the biocomposites is likely to increase the UV-resistance and fire resistance of the materials and decrease hydrophilic nature of composites. Using biocarbon in polymer composites is also interesting because of its relatively low specific weight that will result to lighter composite materials. In this Building Light project the SMEs Torrgas and NPSP will collaborate with and Avans/CoE BBE in a feasibility study on the use of biocarbon in a NPSP biocomposite. The physicochemical properties and moisture absorption of the composites with biocarbon filler will be compared to the biocomposite obtained with the currently used calcium carbonate filler. These novel biocarbon-biocomposites are anticipated to have higher stability and lighter weight, hence resulting to a new, exciting building materials that will create new business opportunities for both of the SME partners.
The objective of Waterrecreatie Nederland is to improve water recreation in the Netherlands. One of the focus points that the foundation focuses on is strengthening sustainable water recreation. With this study, Waterrecreatie Nederland wants to map the current CO2 emissions of recreational shipping (here: sailing and motor boats), in order to be able to report and communicate about this, and also as a baseline measurement for future monitoring in this area.Societal IssueShipping has a substantial impact on several environmental systems, amongst others through air and water pollution, and its contribution to climate change. The role of recreational shipping in these issues is not well known, as measurements are scarce and often partly based on assumptions. Benifit to societyThis project tries to strengthen the knowledge base on the carbon (CO2) emissions of recreational shipping in the Netherlands, and to provide detail on fuel use, fuel types, distances, etc. That knowledge can help in making more informed choices on the future development of recreational shipping, with a lower impact on climate change.