Dienst van SURF
© 2025 SURF
Inhibition of the sodium–glucose cotransporter 2 (SGLT2) by canagliflozin in type 2 diabetes mellitus results in large between-patient variability in clinical response. To better understand this variability, the positron emission tomography (PET) tracer [18F]canagliflozin was developed via a Cu-mediated 18F-fluorination of its boronic ester precursor with a radiochemical yield of 2.0 ± 1.9% and a purity of >95%. The GMP automated synthesis originated [18F]canagliflozin with a yield of 0.5–3% (n = 4) and a purity of >95%. Autoradiography showed [18F]canagliflozin binding in human kidney sections containing SGLT2. Since [18F]canagliflozin is the isotopologue of the extensively characterized drug canagliflozin and thus shares its toxicological and pharmacological characteristics, it enables its immediate use in patients.
Sodium-glucose co-transporter 2 (SGLT2) inhibitors, including canagliflozin, reduce the risk of cardiovascular and kidney outcomes in patients with and without type 2 diabetes, albeit with a large interindividual variation. The underlying mechanisms for this variation in response might be attributed to differences in SGLT2 occupancy, resulting from individual variation in plasma and tissue drug exposure and receptor availability. We performed a feasibility study for the use of [18F]canagliflozin positron emission tomography (PET) imaging to determine the association between clinical canagliflozin doses and SGLT2 occupancy in patients with type 2 diabetes. We obtained two 90-minute dynamic PET scans with diagnostic intravenous [18F]canagliflozin administration and a full kinetic analysis in 7 patients with type 2 diabetes. Patients received 50, 100, or 300 mg oral canagliflozin (n = 2:4:1) 2.5 hours before the second scan. Canagliflozin pharmacokinetics and urinary glucose excretion were measured. The apparent SGLT2 occupancy was derived from the difference between the apparent volume of distribution of [18F]canagliflozin in the baseline and post-drug PET scans. Individual canagliflozin area under the curve from oral dosing until 24-hours (AUCP0-24h) varied largely (range 1,715–25,747 μg/L*hour, mean 10,580 μg/L*hour) and increased dose dependently with mean values of 4,543, 6,525, and 20,012 μg/L*hour for 50, 100, and 300 mg, respectively (P = 0.046). SGLT2 occupancy ranged between 65% and 87%, but did not correlate with canagliflozin dose, plasma exposure, or urinary glucose excretion. We report the feasibility of [18F]canagliflozin PET imaging to determine canagliflozin kidney disposition and SGLT2 occupancy. This suggests the potential of [18F]canagliflozin as a tool to visualize and quantify clinically SGLT2 tissue binding.
Aims: Prescribing errors among junior doctors are common in clinical practice because many lack prescribing competence after graduation. This is in part due to inadequate education in clinical pharmacology and therapeutics (CP&T) in the undergraduate medical curriculum. To support CP&T education, it is important to determine which drugs medical undergraduates should be able to prescribe safely and effectively without direct supervision by the time they graduate. Currently, there is no such list with broad-based consensus. Therefore, the aim was to reach consensus on a list of essential drugs for undergraduate medical education in the Netherlands. Methods: A two-round modified Delphi study was conducted among pharmacists, medical specialists, junior doctors and pharmacotherapy teachers from all eight Dutch academic hospitals. Participants were asked to indicate whether it was essential that medical graduates could prescribe specific drugs included on a preliminary list. Drugs for which ≥80% of all respondents agreed or strongly agreed were included in the final list. Results: In all, 42 (65%) participants completed the two Delphi rounds. A total of 132 drugs (39%) from the preliminary list and two (3%) newly proposed drugs were included. Conclusions: This is the first Delphi consensus study to identify the drugs that Dutch junior doctors should be able to prescribe safely and effectively without direct supervision. This list can be used to harmonize and support the teaching and assessment of CP&T. Moreover, this study shows that a Delphi method is suitable to reach consensus on such a list, and could be used for a European list.
MULTIFILE