Dienst van SURF
© 2025 SURF
BACKGROUND: Early accurate assessment of burn depth is important to determine the optimal treatment of burns. The method most used to determine burn depth is clinical assessment, which is the least expensive, but not the most accurate.Laser Doppler imaging (LDI) is a technique with which a more accurate (>95%) estimate of burn depth can be made by measuring the dermal perfusion. The actual effect on therapeutic decisions, clinical outcomes and the costs of the introduction of this device, however, are unknown. Before we decide to implement LDI in Dutch burn care, a study on the effectiveness and cost-effectiveness of LDI is necessary.METHODS/DESIGN: A multicenter randomised controlled trial will be conducted in the Dutch burn centres: Beverwijk, Groningen and Rotterdam. All patients treated as outpatient or admitted to a burn centre within 5 days post burn, with burns of indeterminate depth (burns not obviously superficial or full thickness) and a total body surface area burned of ≤ 20% are eligible. A total of 200 patients will be included. Burn depth will be diagnosed by both clinical assessment and laser Doppler imaging between 2-5 days post burn in all patients. Subsequently, patients are randomly divided in two groups: 'new diagnostic strategy' versus 'current diagnostic strategy'. The results of the LDI-scan will only be provided to the treating clinician in the 'new diagnostic strategy' group. The main endpoint is the effect of LDI on wound healing time.In addition we measure: a) the effect of LDI on other patient outcomes (quality of life, scar quality), b) the effect of LDI on diagnostic and therapeutic decisions, and c) the effect of LDI on total (medical and non-medical) costs and cost-effectiveness.DISCUSSION: This trial will contribute to our current knowledge on the use of LDI in burn care and will provide evidence on its cost-effectiveness.TRIAL REGISTRATION: NCT01489540.
Purpose In this systematic literature review, the effects of the application of a checklist during in hospital resuscitation of trauma patients on adherence to the ATLS guidelines, trauma team performance, and patient-related outcomes were integrated. Methods A systematic review was performed following the Preferred Reporting Items for Systematic Reviews and Metaanalyses checklist. The search was performed in Pubmed, Embase, CINAHL, and Cochrane inception till January 2019. Randomized controlled- or controlled before-and-after study design were included. All other forms of observational study designs, reviews, case series or case reports, animal studies, and simulation studies were excluded. The Effective Public Health Practice Project Quality Assessment Tool was applied to assess the methodological quality of the included studies. Results Three of the 625 identified articles were included, which all used a before-and-after study design. Two studies showed that Advanced Trauma Life Support (ATLS)-related tasks are significantly more frequently performed when a checklist was applied during resuscitation. [14 of 30 tasks (p < 0.05), respectively, 18 of 19 tasks (p < 0.05)]. One study showed that time to task completion (− 9 s, 95% CI = − 13.8 to − 4.8 s) and workflow improved, which was analyzed as model fitness (0.90 vs 0.96; p < 0.001); conformance frequency (26.1% vs 77.6%; p < 0.001); and frequency of unique workflow traces (31.7% vs 19.1%; p = 0.005). One study showed that the incidence of pneumonia was higher in the group where a checklist was applied [adjusted odds ratio (aOR) 1.69, 95% Confidence Interval (CI 1.03–2.80)]. No difference was found for nine other assessed complications or missed injuries. Reduced mortality rates were found in the most severely injured patient group (Injury Severity score > 25, aOR 0.51, 95% CI 0.30–0.89). Conclusions The application of a checklist may improve ATLS adherence and workflow during trauma resuscitation. Current literature is insufficient to truly define the effect of the application of a checklist during trauma resuscitation on patientrelated outcomes, although one study showed promising results as an improved chance of survival for the most severely injured patients was found.
LINK
Background To gain insight into the role of plantar intrinsic foot muscles in fall-related gait parameters in older adults, it is fundamental to assess foot muscles separately. Ultrasonography is considered a promising instrument to quantify the strength capacity of individual muscles by assessing their morphology. The main goal of this study was to investigate the intra-assessor reliability and measurement error for ultrasound measures for the morphology of selected foot muscles and the plantar fascia in older adults using a tablet-based device. The secondary aim was to compare the measurement error between older and younger adults and between two different ultrasound machines. Methods Ultrasound images of selected foot muscles and the plantar fascia were collected in younger and older adults by a single operator, intensively trained in scanning the foot muscles, on two occasions, 1–8 days apart, using a tablet-based and a mainframe system. The intra-assessor reliability and standard error of measurement for the cross-sectional area and/or thickness were assessed by analysis of variance. The error variance was statistically compared across age groups and machines. Results Eighteen physically active older adults (mean age 73.8 (SD: 4.9) years) and ten younger adults (mean age 21.9 (SD: 1.8) years) participated in the study. In older adults, the standard error of measurement ranged from 2.8 to 11.9%. The ICC ranged from 0.57 to 0.97, but was excellent in most cases. The error variance for six morphology measures was statistically smaller in younger adults, but was small in older adults as well. When different error variances were observed across machines, overall, the tablet-based device showed superior repeatability. Conclusions This intra-assessor reliability study showed that a tablet-based ultrasound machine can be reliably used to assess the morphology of selected foot muscles in older adults, with the exception of plantar fascia thickness. Although the measurement errors were sometimes smaller in younger adults, they seem adequate in older adults to detect group mean hypertrophy as a response to training. A tablet-based ultrasound device seems to be a reliable alternative to a mainframe system. This advocates its use when foot muscle morphology in older adults is of interest.
MULTIFILE